-
双钙钛矿太阳能电池以其低成本、高性能、环境友好、稳定性强而备受关注. 本研究使用Silvaco TCAD分析了Cs2AgBi0.75Sb0.25Br6太阳能电池的钙钛矿层厚度、能带偏移、金属电极功函数、传输层厚度及掺杂浓度与器件效率的关系, 以提升器件性能. 基于空穴传输层为Spiro-OMeTAD, 电子传输层为ZnO的器件进行初始研究, 其显示出12.66%的光电转换效率. 结果表明, 当钙钛矿层厚度大于500 nm时, 效率趋于饱和. 最佳导带偏移量为0—+0.5 eV, 最佳价带偏移量为–0.1—+0.2 eV. 在改变器件的电子传输层为ZnOS, 空穴传输层分别为MoO3, Cu2O和CuSCN的情况下, 优化其厚度和掺杂浓度, 最终空穴传输层为Cu2O的双钙钛矿太阳能电池理论光电转换效率达22.85%, 比目前报道的理论效率值相对提升了25.6%. 此外, 当金属电极功函数小于–4.9 eV时易实现最佳效率. 本工作为开发高性能无铅钙钛矿太阳能电池提供了理论指导.Double perovskite solar cells have attracted much attention due to their low cost, high performance, environmental friendliness, and strong stability. In this study, the effect of thickness of perovskite layer, band offset, metal electrode work function, the thickness and doping concentration of the transport layer on the efficiency of Cs2AgBi0.75Sb0.25Br6 solar cells are analyzed by using Silvaco TCAD to improve device performance. This preliminary study of device based on Spiro-OMeTAD as hole transport layer (HTL) and ZnO as electron transport layer (ETL) shows that the photovoltaic conversion efficiency (PCE) is 12.66%. The results show that the efficiency gradually saturates when the thickness of the perovskite layer is greater than 500 nm. The optimal conduction band offset (CBO) ranges from 0 eV to +0.5 eV and the optimal valence band offset (VBO) from –0.1 eV to +0.2 eV. After changing the device's ETL into ZnOS and HTLs into MoO3, Cu2O and CuSCN, respectively, and optimizing their thickness values and doping concentrations, the final theoretical photovoltaic conversion efficiency of the double perovskite solar cell with an HTL of Cu2O can reach 22.85%, which is increased by 25.6% compared with the currently reported theoretical efficiency value. Moreover, the optimal efficiency is achieved when the metal electrode work function is less than –4.9 eV. This work will help find suitable materials for the transport layer and provide guidance for developing the high-performance and lead-free perovskite solar cells.
-
Keywords:
- double perovskite solar cell /
- photoelectric conversion efficiency /
- band offset /
- electrode work function
[1] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[2] Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G 2019 Science 364 475Google Scholar
[3] Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar
[4] Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar
[5] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar
[6] Zhang Z, Yang G, Zhou C, Chung C C, Hany I 2019 RSC Adv. 9 23459Google Scholar
[7] Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar
[8] Hutter E M, Gélvez-Rueda M C, Bartesaghi D, Grozema F C, Savenije T 2018 ACS Omega 3 11655Google Scholar
[9] Du K Z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed. 56 8158Google Scholar
[10] Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G 2018 ACS Energy Lett. 3 1781Google Scholar
[11] Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z 2018 Chemphyschemistry 19 1696Google Scholar
[12] Liu Y, Zhang L, Wang M, Zhong Y J, Huang M R, Long Y, Zhu H W 2019 Mater. Today 28 25Google Scholar
[13] Madan J, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar
[14] Singh N, Agarwal A, Agarwal M 2021 Opt. Mater. 114 110964Google Scholar
[15] Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y 2018 Sol. Energy 169 11Google Scholar
[16] Kanoun A A, Kanoun M B, Merad A E, Goumri-Said S 2019 Sol. Energy 182 237Google Scholar
[17] Jalalian D, Ghadimi A, Kiani A 2019 Eur. Phys. J. 87 10101Google Scholar
[18] Rahman S I, Faisal S, Ahmed S, Dhrubo T I 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) Bengaluru, India, 30 September–2 October, 2017 pp546–550
[19] Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar
[20] Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar
[21] Ahmed S, Jannat F, Alim M A 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) Dhaka, Bangladesh, November 21, 2020 pp297–301
[22] Minemoto T, Julayhi J 2013 Curr. Appl. Phys. 13 103Google Scholar
[23] Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar
[24] Haider S Z, Anwar H, Jamil Y, Shahid M 2020 J. Phys. Chem. Solids 136 109147Google Scholar
[25] Ding C, Zhang Y H, Liu F, Kitabatake Y, Hayase S, Toyoda T, Yoshino K, Minemoto T, Katayama K, Shen Q 2018 Nano Energy 53 17Google Scholar
[26] Aouaj M A, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458Google Scholar
[27] Way A, Luke J, Evans A D, Li Z, Kim J-S, Durrant J R, Hin Lee H K, Tsoi W C 2019 AIP Adv. 9 085220Google Scholar
[28] Huang L J, Ren N F, Li B J, Zhou M 2014 Mater. Lett. 116 405Google Scholar
[29] Liu J, Cao W Q, Jin H B, Yuan J, Zhang D Q, Cao M S 2015 J. Mater. Chem. C 3 4670Google Scholar
[30] Pantaler M, Olthof S, Meerholz K, Lupascu D C 2019 MRS Adv. 4 3545Google Scholar
[31] Dai Z, Zheng D, Chen J, Yang B 2021 Chem. Phys. Lett. 770 138440Google Scholar
[32] Almosni S, Cojocaru L, Li D, Uchida S, Kubo T, Segawa H 2017 Energy Technol. 5 1767Google Scholar
[33] Govindaraj G, Baskaran N, Shahi K, Monoravi P 1995 Solid State Ion 76 47Google Scholar
[34] Collaboration: Authors and editors of the volumes III/17E-17F-41C. Non-Tetrahedrally Bonded Elements and Binary Compounds I 1998 1
[35] Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G 2010 J. Phys. Chem. C 114 9111Google Scholar
[36] Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar
[37] Gloeckler M 2005 Ph. D. Dissertation (Fort collins, Colorado: Colorado State University
[38] Eom K, Kwon U, Kalanur S S, Park H J, Seo H 2017 J. Mater. Chem. A 5 2563Google Scholar
[39] Chang J H, Shen S Y, Dong C D, Shkir M, Kumar M 2022 Chemosphere 287 131960Google Scholar
[40] Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y, Soldera F, Horwat D, Mücklich F, Pierson J 2016 Phys. Rev. B 94 245418Google Scholar
[41] Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y H, Faber H, Pattanasattayavong P, Li J, Yan F 2017 Adv. Funct. Mater. 27 1701818Google Scholar
[42] Takahashi R, Dazai T, Tsukahara Y, Borowiak A, Koinuma H 2022 J. Appl. Phys. 131 175302Google Scholar
[43] Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar
[44] Rudnyi E B, Vovk O M, Kaibicheva E A, Sidorov L N 1989 J. Chem. Thermodyn. 21 247Google Scholar
[45] Brandt R E, Young M, Park H H, Dameron A, Chua D, Lee Y S, Teeter G, Gordon R G, Buonassisi T 2014 Appl. Phys. Lett. 105 26Google Scholar
[46] Gavrilov S, Zheleznyakova A, Dronov A, Dittrich T 2009 Physics, Chemistry And Application Of Nanostructures: Reviews and Short Notes (World Scientific) pp577–580
[47] Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R 2020 Sol. Energy 196 177Google Scholar
[48] Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 71 208802Google Scholar
Google ScholarZhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin.71 208802 [49] Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar
[50] 王家平2021 硕士学位论文 (西安: 西安电子科技大学)
Wang J P 2021 M. S. Thesis (Xi'an: Xidian University
[51] Tanaka K, Minemoto T, Takakura H J S E 2009 Sol. Energy 83 477Google Scholar
[52] Saeed M A, Kim S H, Baek K, Hyun J K, Lee S Y, Shim J W 2021 Appl. Surf. Sci. 567 150852Google Scholar
[53] Kim S M, Saeed M A, Kim S H, Shim J W 2020 Appl. Surf. Sci. 527 146840Google Scholar
[54] 许李毅飞2022 硕士学位论文 (成都: 电子科技大学)
Xu L Y F 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China
[55] Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin S M, Tress W R J A E L 2018 ACS Energy Lett. 3 773Google Scholar
[56] Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J J S R 2020 Sol. RRL 4 1900336Google Scholar
[57] Parajuli D, Shah D K, KC D, Kumar S, Park M, Pant B J E 2022 Electrochemistry 3 407Google Scholar
[58] Islam M A, Abou Hashish M D, Hatta S M, Soin N B, Khan S, Amin N IOP Conference Series: Materials Science and Engineering p012005
-
图 5 Cs2AgBi0.75Sb0.25Br6太阳能电池的不同 (a)负值导带偏移量, (b)正值导带偏移量, (d)负值价带偏移量, (e)正值价带偏移量的能带图; 不同(c)负值导带偏移量和(f)负值价带偏移量下界面缺陷层的载流子复合速率
Fig. 5. Energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with different (a) negative CBOs, (b) positive CBOs, (d) negative VBOs, (e) positive VBOs; carrier recombination rate in interfacial defect layers with different (c) negative CBOs and (f) negative VBOs.
表 1 Cs2AgBi0.75Sb0.25Br6太阳能电池各层材料的参数
Table 1. Parameters of each layer material of Cs2AgBi0.75Sb0.25Br6 solar cell.
Parameter ZnO ZnOS Cs2AgBi0.75Sb0.25Br6 Spiro-OMeTAD MoO3 Cu2O CuSCN Permittivity, εr 9[29] 9[18] 6.5[30,31] 3[32] 12.5[33] 7.1[34] 10[35] Band gap/eV 3.3[36] 2.83[37] 1.8[8] 3[38] 3[39] 2.17[40] 3.4[41] Affinity/eV 4[42] 3.6[37] 3.58[43] 2.45[32] 2.5[44] 3.2[45] 1.9[46] NC/cm–3 3.7×1018 2.2×1018 2.2×1018 2.2×1018 2.2×1018 2.02×1017 2.2×1018 NV/cm–3 1.8×1019 1.8×1019 1.8×1019 1.8×1019 1.8×1019 1.1×1019 1.8×1019 ND/cm–3 1×1017 1×1017 1.0×1013 0 0 0 0 NA/cm–3 0 0 1.0×1017 1×1018 1×1018 1×1019 1×1019 μn/(cm2·V–1·S–1) 100 100 2 2×10–4 25 200 100 μp/(cm2·V–1·S–1) 25 25 2 2×10–4 100 80 25 表 2 优化的器件光伏性能参数及参考
Table 2. Optimized device photovoltaic performance parameters and references.
Thickness/nm Doping
concentration/cm–3VOC/V JSC/(mA·cm–2) PCE/% FF/% This work ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
70/400/350ETL/HTL: 2×1018/9×1021 1.36 14.12 16.87 88.04 After thickness optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
30/500/280ETL/HTL: 2×1018/9×1021 1.36 15.70 18.56 87.24 After ND(ZnOS) optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
30/500/280ETL/HTL: 1×1020/9×1021 1.35 15.70 18.62 87.37 After NA(Cu2O) optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
30/500/280ETL/HTL: 1×1020/1×1017 1.35 19.49 22.85 86.76 Ref.[14] ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
70/400/350ETL/HTL: 2×1018/9×1021 1.39 16.04 18.18 78.34 Other Ref.[58] ZnO/Cs2AgBi0.75Sb0.25Br6/NiO:
70/400/350ETL/HTL: 5×1017/3×1018 1.23 15.57 17.13 89.39 Other Ref.[13] NiO/Cs2AgBi0.75Sb0.25Br6/PCBM/
SnO2: 40/500/40/6ETL/HTL: 1×1015/5×1017 1.14 14.9 10.01 58.70 -
[1] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[2] Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G 2019 Science 364 475Google Scholar
[3] Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar
[4] Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar
[5] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar
[6] Zhang Z, Yang G, Zhou C, Chung C C, Hany I 2019 RSC Adv. 9 23459Google Scholar
[7] Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar
[8] Hutter E M, Gélvez-Rueda M C, Bartesaghi D, Grozema F C, Savenije T 2018 ACS Omega 3 11655Google Scholar
[9] Du K Z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed. 56 8158Google Scholar
[10] Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G 2018 ACS Energy Lett. 3 1781Google Scholar
[11] Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z 2018 Chemphyschemistry 19 1696Google Scholar
[12] Liu Y, Zhang L, Wang M, Zhong Y J, Huang M R, Long Y, Zhu H W 2019 Mater. Today 28 25Google Scholar
[13] Madan J, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar
[14] Singh N, Agarwal A, Agarwal M 2021 Opt. Mater. 114 110964Google Scholar
[15] Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y 2018 Sol. Energy 169 11Google Scholar
[16] Kanoun A A, Kanoun M B, Merad A E, Goumri-Said S 2019 Sol. Energy 182 237Google Scholar
[17] Jalalian D, Ghadimi A, Kiani A 2019 Eur. Phys. J. 87 10101Google Scholar
[18] Rahman S I, Faisal S, Ahmed S, Dhrubo T I 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) Bengaluru, India, 30 September–2 October, 2017 pp546–550
[19] Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar
[20] Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar
[21] Ahmed S, Jannat F, Alim M A 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) Dhaka, Bangladesh, November 21, 2020 pp297–301
[22] Minemoto T, Julayhi J 2013 Curr. Appl. Phys. 13 103Google Scholar
[23] Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar
[24] Haider S Z, Anwar H, Jamil Y, Shahid M 2020 J. Phys. Chem. Solids 136 109147Google Scholar
[25] Ding C, Zhang Y H, Liu F, Kitabatake Y, Hayase S, Toyoda T, Yoshino K, Minemoto T, Katayama K, Shen Q 2018 Nano Energy 53 17Google Scholar
[26] Aouaj M A, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458Google Scholar
[27] Way A, Luke J, Evans A D, Li Z, Kim J-S, Durrant J R, Hin Lee H K, Tsoi W C 2019 AIP Adv. 9 085220Google Scholar
[28] Huang L J, Ren N F, Li B J, Zhou M 2014 Mater. Lett. 116 405Google Scholar
[29] Liu J, Cao W Q, Jin H B, Yuan J, Zhang D Q, Cao M S 2015 J. Mater. Chem. C 3 4670Google Scholar
[30] Pantaler M, Olthof S, Meerholz K, Lupascu D C 2019 MRS Adv. 4 3545Google Scholar
[31] Dai Z, Zheng D, Chen J, Yang B 2021 Chem. Phys. Lett. 770 138440Google Scholar
[32] Almosni S, Cojocaru L, Li D, Uchida S, Kubo T, Segawa H 2017 Energy Technol. 5 1767Google Scholar
[33] Govindaraj G, Baskaran N, Shahi K, Monoravi P 1995 Solid State Ion 76 47Google Scholar
[34] Collaboration: Authors and editors of the volumes III/17E-17F-41C. Non-Tetrahedrally Bonded Elements and Binary Compounds I 1998 1
[35] Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G 2010 J. Phys. Chem. C 114 9111Google Scholar
[36] Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar
[37] Gloeckler M 2005 Ph. D. Dissertation (Fort collins, Colorado: Colorado State University
[38] Eom K, Kwon U, Kalanur S S, Park H J, Seo H 2017 J. Mater. Chem. A 5 2563Google Scholar
[39] Chang J H, Shen S Y, Dong C D, Shkir M, Kumar M 2022 Chemosphere 287 131960Google Scholar
[40] Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y, Soldera F, Horwat D, Mücklich F, Pierson J 2016 Phys. Rev. B 94 245418Google Scholar
[41] Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y H, Faber H, Pattanasattayavong P, Li J, Yan F 2017 Adv. Funct. Mater. 27 1701818Google Scholar
[42] Takahashi R, Dazai T, Tsukahara Y, Borowiak A, Koinuma H 2022 J. Appl. Phys. 131 175302Google Scholar
[43] Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar
[44] Rudnyi E B, Vovk O M, Kaibicheva E A, Sidorov L N 1989 J. Chem. Thermodyn. 21 247Google Scholar
[45] Brandt R E, Young M, Park H H, Dameron A, Chua D, Lee Y S, Teeter G, Gordon R G, Buonassisi T 2014 Appl. Phys. Lett. 105 26Google Scholar
[46] Gavrilov S, Zheleznyakova A, Dronov A, Dittrich T 2009 Physics, Chemistry And Application Of Nanostructures: Reviews and Short Notes (World Scientific) pp577–580
[47] Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R 2020 Sol. Energy 196 177Google Scholar
[48] Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 71 208802Google Scholar
Google ScholarZhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin.71 208802 [49] Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar
[50] 王家平2021 硕士学位论文 (西安: 西安电子科技大学)
Wang J P 2021 M. S. Thesis (Xi'an: Xidian University
[51] Tanaka K, Minemoto T, Takakura H J S E 2009 Sol. Energy 83 477Google Scholar
[52] Saeed M A, Kim S H, Baek K, Hyun J K, Lee S Y, Shim J W 2021 Appl. Surf. Sci. 567 150852Google Scholar
[53] Kim S M, Saeed M A, Kim S H, Shim J W 2020 Appl. Surf. Sci. 527 146840Google Scholar
[54] 许李毅飞2022 硕士学位论文 (成都: 电子科技大学)
Xu L Y F 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China
[55] Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin S M, Tress W R J A E L 2018 ACS Energy Lett. 3 773Google Scholar
[56] Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J J S R 2020 Sol. RRL 4 1900336Google Scholar
[57] Parajuli D, Shah D K, KC D, Kumar S, Park M, Pant B J E 2022 Electrochemistry 3 407Google Scholar
[58] Islam M A, Abou Hashish M D, Hatta S M, Soin N B, Khan S, Amin N IOP Conference Series: Materials Science and Engineering p012005
计量
- 文章访问数: 2000
- PDF下载量: 47
- 被引次数: 0