搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拓扑/二维量子材料的自旋电子器件

江龙兴 李庆超 张旭 李京峰 张静 陈祖信 曾敏 吴昊

引用本文:
Citation:

基于拓扑/二维量子材料的自旋电子器件

江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊

Spintronic devices based on topological and two-dimensional materials

Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao
PDF
HTML
导出引用
  • 拓扑材料和二维材料等新型量子材料, 为自旋电子器件的研究与发展提供了新契机. 这些量子材料不但有助于提高电荷-自旋转换效率及提供高质量异质结界面, 从而改善器件表现, 更由于它们丰富的相互作用和耦合关系, 能提供新奇物理现象和新的物性调控机制, 在自旋电子器件方面具有潜在的应用价值. 拓扑材料和二维材料, 尤其是层状拓扑材料、二维磁性材料以及它们组成的异质结的相关研究, 取得了丰硕的成果, 兼顾了启发性与及时的实用性. 本文将综述这些新型量子材料的近期研究成果: 首先重点介绍拓扑材料在自旋轨道力矩器件中实现的突破; 其次着重总结二维磁性材料的特性及其在自旋电子器件中的应用; 最后将进一步讨论由拓扑材料/二维磁性材料组成的全范德瓦耳斯异质结的研究进展.
    Novel quantum materials such as topological materials, two-dimensional materials, create new opportunities for the spintronic devices. These materials can improve the charge-spin conversion efficiency, provide high-quality interface, and enhance the energy efficiency for spintronic devices. In addition, they have rich interactions and coupling effects, which provides a perfect platform for finding new physics and novel methods to control the spintronic properties. Many inspiring results have been reported regarding the research on topological materials and two-dimensional materials, especially the layered topological and two-dimensional magnetic materials, and their heterostructures. This paper reviews the recent achievements of these novel quantum materials on spintronic applications. Firstly the breakthroughs that topological materials have been made in spin-orbit torque devices is introduced, then two-dimensional magnetic materials and their performances in spintronic devices are presented, finally the research progress of topological materials/two-dimensional magnetic materials heterostructures is discussed. This review can help to get a comprehensive understanding of the development of these novel quantum materials in the field of spintronics and inspire new ideas of research on these novel materials.
      通信作者: 李京峰, lijingfeng@sslab.org.cn ; 吴昊, wuhao1@sslab.org.cn
    • 基金项目: 国家重点研发计划 (批准号: 2022YFA1402801)、国家自然科学基金 (批准号: 52271239)和广东省基础与应用基础研究基金 (批准号: 2022B1515120058, 2022A1515110648) 资助的课题.
      Corresponding author: Li Jing-Feng, lijingfeng@sslab.org.cn ; Wu Hao, wuhao1@sslab.org.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402801), the National Natural Science Foundation of China (Grant No. 52271239), and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2022B1515120058, 2022A1515110648).
    [1]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [2]

    Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [3]

    Pai C F, Ou Y, Vilela-Leão L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [4]

    Šmejkal L, Mokrousov Y, Yan B, MacDonald A H 2018 Nat. Phys. 14 242Google Scholar

    [5]

    Šmejkal L, Jungwirth T, Sinova J 2017 Phys. Status Solidi RRL 11 1700044Google Scholar

    [6]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [7]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [8]

    Gurram M, Omar S, Wees B J van 2017 Nat. Commun. 8 248Google Scholar

    [9]

    Zhang L, Chen Y, Pan D, Huang S, Zhao J, Xu H Q 2022 Nanotechnology 33 325303Google Scholar

    [10]

    Zhang L, Pan D, Chen Y, Zhao J, Xu H 2022 Chin. Phys. B 31 098507Google Scholar

    [11]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [12]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X 2018 Nat. Mater. 17 778Google Scholar

    [13]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [14]

    Ganguli S C, Vaňo V, Kezilebieke S, Lado J L, Liljeroth P 2022 Nano Lett. 22 1845Google Scholar

    [15]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [16]

    Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W, Chang H 2022 Nat. Commun. 13 5067Google Scholar

    [17]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [18]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [19]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar

    [20]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [21]

    Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F 2019 Nat. Nanotechnol. 14 1116Google Scholar

    [22]

    Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar

    [23]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [24]

    Roschewsky N, Walker E S, Gowtham P, Muschinske S, Hellman F, Bank S R, Salahuddin S 2019 Phys. Rev. B 99 195103Google Scholar

    [25]

    He M, Sun H, He Q L 2019 Front. Phys. 14 43401Google Scholar

    [26]

    Li P, Kally J, Zhang S S L, Pillsbury T, Ding J, Csaba G, Ding J, Jiang J S, Liu Y, Sinclair R, Bi C, DeMann A, Rimal G, Zhang W, Field S B, Tang J, Wang W, Heinonen O G, Novosad V, Hoffmann A, Samarth N, Wu M 2019 Sci. Adv. 5 eaaw3415Google Scholar

    [27]

    Wang H, Kally J, Şahin C, Liu T, Yanez W, Kamp E J, Richardella A, Wu M, Flatté M E, Samarth N 2019 Phys. Rev. Res. 1 012014Google Scholar

    [28]

    Culcer D, Cem Keser A, Li Y, Tkachov G 2020 2D Mater. 7 022007Google Scholar

    [29]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [30]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [31]

    Wu J, Liu J, Liu X J 2014 Phys. Rev. Lett. 113 136403Google Scholar

    [32]

    Zhang C, Fukami S, Watanabe K, Ohkawara A, DuttaGupta S, Sato H, Matsukura F, Ohno H 2016 Appl. Phys. Lett. 109 192405Google Scholar

    [33]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [34]

    Ramaswamy R, Qiu X, Dutta T, Pollard S D, Yang H 2016 Appl. Phys. Lett. 108 202406Google Scholar

    [35]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [36]

    Akyol M, Jiang W, Yu G, Fan Y, Gunes M, Ekicibil A, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 109 022403Google Scholar

    [37]

    Laczkowski P, Rojas-Sánchez J C, Savero-Torres W, Jaffrès H, Reyren N, Deranlot C, Notin L, Beigné C, Marty A, Attané J P, Vila L, George J M, Fert A 2014 Appl. Phys. Lett. 104 142403Google Scholar

    [38]

    Laczkowski P, Fu Y, Yang H, Rojas-Sánchez J C, Noel P, Pham V T, Zahnd G, Deranlot C, Collin S, Bouard C, Warin P, Maurel V, Chshiev M, Marty A, Attané J P, Fert A, Jaffrès H, Vila L, George J M 2017 Phys. Rev. B 96 140405Google Scholar

    [39]

    Zhu L, Ralph Daniel C, Buhrman R A 2018 Phys. Rev. Appl. 10 031001Google Scholar

    [40]

    Nguyen M H, Shi S, Rowlands G E, Aradhya S V, Jermain C L, Ralph D C, Buhrman R A 2018 Appl. Phys. Lett. 112 062404Google Scholar

    [41]

    Yamanouchi M, Chen L, Kim J, Hayashi M, Sato H, Fukami S, Ikeda S, Matsukura F, Ohno H 2013 Appl. Phys. Lett. 102 212408Google Scholar

    [42]

    Wen Y, Wu J, Li P, Zhang Q, Zhao Y, Manchon A, Xiao J Q, Zhang X 2017 Phys. Rev. B 95 104403Google Scholar

    [43]

    Zhang X, Mao J, Chang M X, Yan Z, Zuo Y, Xi L 2020 J. Phys. D: Appl. Phys. 53 225003Google Scholar

    [44]

    Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403Google Scholar

    [45]

    Wu C N, Lin Y H, Fanchiang Y T, Hung H Y, Lin H Y, Lin P H, Lin J G, Lee S F, Hong M, Kwo J 2015 J. Appl. Phys. 117 17D148Google Scholar

    [46]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [47]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [48]

    Shi S, Wang A, Wang Y, Ramaswamy R, Shen L, Moon J, Zhu D, Yu J, Oh S, Feng Y, Yang H 2018 Phys. Rev. B 97 041115Google Scholar

    [49]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [50]

    Shao Q, Wu H, Pan Q, Zhang P, Pan L, Wong K, Che X, Wang K L 2018 IEEE International Electron Devices Meeting San Francisco, CA , 2018-12 pp36.3.1–36.3. 4

    [51]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [52]

    Dc M, Grassi R, Chen J Y, Jamali M, Reifsnyder Hickey D, Zhang D, Zhao Z, Li H, Quarterman P, Lü Y, Li M, Manchon A, Mkhoyan K A, Low T, Wang J P 2018 Nat. Mater. 17 800Google Scholar

    [53]

    Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sánchez J, Mangin S, Wang K L 2019 Adv. Mater. 31 1901681Google Scholar

    [54]

    Wu H, Zhang P, Deng P, Lan Q, Pan Q, Razavi S A, Che X, Huang L, Dai B, Wong K, Han X, Wang K L 2019 Phys. Rev. Lett. 123 207205Google Scholar

    [55]

    Che X, Pan Q, Vareskic B, Zou J, Pan L, Zhang P, Yin G, Wu H, Shao Q, Deng P, Wang K L 2020 Adv. Mater. 32 1907661Google Scholar

    [56]

    Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lü Y, Zhao Z, Nikolić B K, Mkhoyan K A, Samarth N, Wang J P 2015 Nano Lett. 15 7126Google Scholar

    [57]

    Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nanotechnol. 11 352Google Scholar

    [58]

    Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [59]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [60]

    Lu Q, Li P, Guo Z, Dong G, Peng B, Zha X, Min T, Zhou Z, Liu M 2022 Nat. Commun. 13 1650Google Scholar

    [61]

    Dc M, Chen J Y, Peterson T, Sahu P, Ma B, Mousavi N, Harjani R, Wang J P 2019 Nano Lett. 19 4836Google Scholar

    [62]

    Zhang X, Zhang J, Zhai Y, Bai Q, Chang M, Yan Z, Zuo Y, Xi L 2021 Phys. Status Solidi RRL 15 2100327Google Scholar

    [63]

    Zhang X, Cui B, Mao J, Yun J, Yan Z, Chang M, Zuo Y, Xi L 2020 Phys. Status Solidi RRL 14 2000033Google Scholar

    [64]

    Cui B, Chen A, Zhang X, Fang B, Zeng Z, Zhang P, Zhang J, He W, Yu G, Yan P, Han X, Wang K L, Zhang X, Wu H 2023 Adv. Mater. 35 2302350Google Scholar

    [65]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [66]

    Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q 2016 2D Mater. 3 031009Google Scholar

    [67]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [68]

    Song T, Sun Q C, Anderson E, Wang C, Qian J, Taniguchi T, Watanabe K, McGuire M A, Stöhr R, Xiao D, Cao T, Wrachtrup J, Xu X 2021 Science 374 1140Google Scholar

    [69]

    Liu S, Yang K, Liu W, Zhang E, Li Z, Zhang X, Liao Z, Zhang W, Sun J, Yang Y, Gao H, Huang C, Ai L, Wong P K J, Wee A T S, N’Diaye A T, Morton S A, Kou X, Zou J, Xu Y, Wu H, Xiu F 2020 Natl. Sci. Rev. 7 745Google Scholar

    [70]

    Wu Y, Francisco B, Chen Z, Wang W, Zhang Y, Wan C, Han X, Chi H, Hou Y, Lodesani A, Yin G, Liu K, Cui Y tao, Wang K L, Moodera J S 2022 Adv. Mater. 34 2110583Google Scholar

    [71]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [72]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z 2018 Nat. Nanotechnol. 13 554Google Scholar

    [73]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [74]

    Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [75]

    Chen S, Huang C, Sun H, Ding J X, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [76]

    Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214Google Scholar

    [77]

    Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, Yu G Q 2023 Chin. Phys. Lett. 40 058501Google Scholar

    [78]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [79]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

    [80]

    Zheng Y, Ma X, Yan F, Lin H, Zhu W, Ji Y, Wang R, Wang K 2022 NPJ 2D Mater. Appl. 6 62Google Scholar

    [81]

    Lin H, Yan F, Hu C, Lü Q, Zhu W, Wang Z, Wei Z, Chang K, Wang K 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [82]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patane A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [83]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [84]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [85]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [86]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [87]

    Li Q, He C, Wang Y, Liu E, Wang M, Wang Y, Zeng J, Ma Z, Cao T, Yi C, Wang N, Watanabe K, Taniguchi T, Shao L, Shi Y, Chen X, Liang S J, Wang Q H, Miao F 2018 Nano Lett. 18 7962Google Scholar

    [88]

    Zhao W, Fei Z, Song T, Choi H K, Palomaki T, Sun B, Malinowski P, McGuire M A, Chu J H, Xu X, Cobden D H 2020 Nat. Mater. 19 503Google Scholar

    [89]

    Fujimura R, Yoshimi R, Mogi M, Tsukazaki A, Kawamura M, Takahashi K S, Kawasaki M, Tokura Y 2021 Appl. Phys. Lett. 119 032402Google Scholar

    [90]

    Wang H, Wu H, Liu Y, Chen D, Pandey C, Yin J, Lei N, Zhang J, Lu H, Shi S, Li P, Fert A, Wang K L, Nie T, Zhao W 2021 arXiv: 2111.14128 [physics. app-ph

    [91]

    Shao Y, Lü W, Guo J, Qi B, Lü W, Li S, Guo G, Zeng Z 2020 Appl. Phys. Lett. 116 092401Google Scholar

    [92]

    Shin I, Cho W J, An E, Park S, Jeong H, Jang S, Baek W J, Park S Y, Yang D, Seo J H, Kim G, Ali M N, Choi S, Lee H, Kim J S, Kim S D, Lee G 2022 Adv. Mater. 34 2101730Google Scholar

    [93]

    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [94]

    Chen X, Wang H, Liu H, Wang C, Wei G, Fang C, Wang H, Geng C, Liu S, Li P, Yu H, Zhao W, Miao J, Li Y, Wang L, Nie T, Zhao J, Wu X 2022 Adv. Mater. 34 2106172Google Scholar

    [95]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [96]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187Google Scholar

    [97]

    Li J, Rashetnia M, Lohmann M, Koo J, Xu Y, Zhang X, Watanabe K, Taniguchi T, Jia S, Chen X, Yan B, Cui Y T, Shi J 2022 Nat. Commun. 13 5134Google Scholar

  • 图 1  (a) 拓扑绝缘体表面态中自旋动量锁定引起的螺旋自旋结构. 箭头表示每个波矢k中的自旋磁矩σ方向, 其方向与自旋角动量相反; (b) 沿+x方向施加电流, 将在电子的自旋和波矢处于正交方向的位置产生非平衡自旋积累[29,30]

    Fig. 1.  (a) Spiral spin structure caused by spin momentum locking in the surface state of topological insulator. Arrow indicates the direction of the spin magnetic moment σ of each wave vector k, which is opposite to the spin angular momentum; (b) applying current in the +x direction will generate non equilibrium spin accumulation at the position where the electron’s spin and wave vector are orthogonal[29,30]

    图 2  (a) 通过栅压调控费米能级示意图, 净自旋极化电流/总电流比 (左纵轴) 与SOT有效场(右纵轴) 随栅压的演化[57]; (b1) (Bi, Sb)2Te3中不同Sb浓度的费米能级位置示意图; (b2) 二维载流子密度n2D和电阻率ρxx, 作为(Bi, Sb)2Te3中Sb浓度的函数; (b3) Jc和SOT有效场与Sb浓度的函数关系[54]; (c) (Bi, Sb)2Te3中不同Sb浓度的费米能级位置示意图以及界面电荷-自旋转换效率与Sb成分的函数关系[22]

    Fig. 2.  (a) Schematic view of Fermi level regulation by gate voltage and corresponding evolution of net spin polarization current/total current ratio (left longitudinal axis) and SOT effective field (right longitudinal axis) with gate voltage[57]; (b1) Fermi energy level positions of different Sb concentrations in (Bi, Sb)2Te3; (b2) two-dimensional carrier density n2D and resistivity ρxx, as a function of Sb concentration in (Bi, Sb)2Te3; (b3) correlation between the effective fields of SOT and Jc and the concentration of Sb[54]; (c) schematic diagram of Fermi energy level positions at different Sb concentrations in (Bi, Sb)2Te3, and correlation between interface charge spin conversion efficiency and Sb concentration[22].

    图 3  (a) Cr2Ge2Te6侧观测到的磁斯格明子; (b) Fe3GeTe2侧观测到的磁斯格明子[70]; (c) 双层CrI3磁序的电切换, 插图描述了不同磁场和电场作用下磁状态[71]; (d) 三层Fe3GeTe2中, 以栅压和温度为函数的磁相图[67]; (e) Fe3GeTe2的透视图(石板蓝色和蓝色球分别代表Fe3+和Fe2+; 虚线箭头表示铁原子间的自旋交换耦合)[74]

    Fig. 3.  (a) Skyrmion lattice observed on the Cr2Ge2Te6 side; (b) skyrmion lattice observed on the Fe3GeTe2 side[70]; (c) electrical switching of the magnetic order in bilayer CrI3, and the insets depict the magnetic states under different magnetic and electric fields[71]; (d) phase diagram of the trilayer Fe3GeTe2 sample as the gate voltage and temperature are varied[67]; (e) perspective view of Fe3GeTe2 (The slate-blue and blue balls represent the Fe3+ and Fe2+; Dashed arrows indicate spin exchange coupling between Fe atoms)[74].

    图 4  (a) 双层CrI3的磁状态示意图; (b) 二维自旋过滤磁性隧道结示意图[76]; (c) Fe3GeTe2/hBN/Fe3GeTe2的磁性隧道结示意图[78]; (d) Fe3GeTe3/Pt双层结构示意图; (e) Fe3GeTe2/Pt双层器件中SOT驱动的垂直磁化翻转[83]

    Fig. 4.  (a) Schematic view of magnetic states in bilayer CrI3; (b) schematic view of 2D spin-filter magnetic tunnel junction[76]; (c) schematic view of magnetic tunnel junction for Fe3GeTe2/hBN/Fe3GeTe2[78]; (d) schematic view of the bilayer structure for Fe3GeTe2/Pt; (e) SOT-driven perpendicular magnetization switching in the Fe3GeTe2/Pt bilayer device[83]

    图 5  (a) 不同 Sb 组分下的 SOT 驱动磁矩翻转的电流密度[89]; (b) Sb 组分与 SOT 驱动磁矩翻转的电流密度依赖关系[89]; (c), (d) 30 mT面内场辅助下的SOT 驱动的磁矩翻转[92]

    Fig. 5.  (a) Current density of SOT switching with different Sb component[89]; (b) dependence of SOT switching current density on Sb composition[89]; (c), (d) 30 mT in-plane field assisted SOT switching[92].

    图 6  (a) 飞秒激光脉冲激发和Fe3GeTe2/Bi2Te3异质结构太赫兹辐射示意图[94]; (b) 在太赫兹时域波形图中, Fe3GeTe2/Bi2Te3异质结构的太赫兹波明显增强[94]; (c) 图6(b)的傅里叶变换图谱; (d) Fe3GeTe2/Bi2Te3异质结构的太赫兹波极性翻转[94]

    Fig. 6.  (a) Femtosecond laser pulse excitation and terahertz radiation schematic diagram of Fe3GeTe2/Bi2Te3 heterostructure[94]; (b) in typical THz temporal waveforms, the terahertz wave of the Fe3GeTe2/Bi2Te3 heterostructure is significantly enhanced[94]; (c) Fourier transform spectrum of Fig. 6(b); (d) terahertz polarity reversal of Fe3GeTe2/Bi2Te3 heterostructures[94].

    图 7  (a) 反铁磁状态控制的大非互易电流[88]; (b) ML-WTe2/CGT 异质结构器件的光学图像[97]; (c) 不同测试通道的反常能斯特电压与磁场的依赖关系[97]; (d) 归一化后的反常能斯特电压与温度的依赖关系[97]

    Fig. 7.  (a) Large nonreciprocal current controlled by the antiferromagnetic state[88]; (b) optical image of the ML-WTe2/CGT heterostructure device[97]; (c) dependence of abnormal Nernst voltage on magnetic field in different test channels[97]; (d) dependence of normalized anomalous Nernst voltage on temperature[97].

    表 1  不同异质结构的自旋霍尔角 (θSH), 临界翻转电流密度 (Jc)

    Table 1.  Spin Hall angles (θSH) and critical switching current density (Jc) of different heterostructures.

    异质结构 θSH Jc/(104 A⋅cm–2) 生长方法 测试方法
    (CrBiSb)2Te3/(BiSb)2Te3[58] 140—425 (1.9 K) 8.9 MBE S-H
    Bi2Se3/CoFeB[47] 1—1.75 60.0 MBE S-F
    Bi2Se3/Ag/CoFeB[48] 0.1—0.5 58.0 MBE S-F
    (BiSb)2Te3/GdFeCo[53] 3.0 12.0 MBE S-H
    (BiSb)2Te3/Ti/CoFeB[54] 2.5 52.0 MBE S-H
    BiSb/MnGa[51] 52 150.0 MBE L-S
    (BiSb)2Te3/Mo/CoFeB[50] 2.66 30.0 MBE S-H
    (BiSb)2Te3/Ti/CoFeB[64] 1.16 10.0 MBE S-H
    BiSe/CoFeB[52] 18.62 23.0 Sputter S-H
    Bi2Se3/NiFe[60] 2.18 Sputter S-H
    Pt/Co/Bi2Se3[63] 0.35 350.0 Sputter S-H
    Pt/Co/(BiSb)2Te3[62] 0.77 83.0 Sputter S-H
    下载: 导出CSV
    Baidu
  • [1]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [2]

    Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [3]

    Pai C F, Ou Y, Vilela-Leão L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [4]

    Šmejkal L, Mokrousov Y, Yan B, MacDonald A H 2018 Nat. Phys. 14 242Google Scholar

    [5]

    Šmejkal L, Jungwirth T, Sinova J 2017 Phys. Status Solidi RRL 11 1700044Google Scholar

    [6]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [7]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [8]

    Gurram M, Omar S, Wees B J van 2017 Nat. Commun. 8 248Google Scholar

    [9]

    Zhang L, Chen Y, Pan D, Huang S, Zhao J, Xu H Q 2022 Nanotechnology 33 325303Google Scholar

    [10]

    Zhang L, Pan D, Chen Y, Zhao J, Xu H 2022 Chin. Phys. B 31 098507Google Scholar

    [11]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [12]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X 2018 Nat. Mater. 17 778Google Scholar

    [13]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [14]

    Ganguli S C, Vaňo V, Kezilebieke S, Lado J L, Liljeroth P 2022 Nano Lett. 22 1845Google Scholar

    [15]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [16]

    Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W, Chang H 2022 Nat. Commun. 13 5067Google Scholar

    [17]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [18]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [19]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar

    [20]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [21]

    Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F 2019 Nat. Nanotechnol. 14 1116Google Scholar

    [22]

    Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar

    [23]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [24]

    Roschewsky N, Walker E S, Gowtham P, Muschinske S, Hellman F, Bank S R, Salahuddin S 2019 Phys. Rev. B 99 195103Google Scholar

    [25]

    He M, Sun H, He Q L 2019 Front. Phys. 14 43401Google Scholar

    [26]

    Li P, Kally J, Zhang S S L, Pillsbury T, Ding J, Csaba G, Ding J, Jiang J S, Liu Y, Sinclair R, Bi C, DeMann A, Rimal G, Zhang W, Field S B, Tang J, Wang W, Heinonen O G, Novosad V, Hoffmann A, Samarth N, Wu M 2019 Sci. Adv. 5 eaaw3415Google Scholar

    [27]

    Wang H, Kally J, Şahin C, Liu T, Yanez W, Kamp E J, Richardella A, Wu M, Flatté M E, Samarth N 2019 Phys. Rev. Res. 1 012014Google Scholar

    [28]

    Culcer D, Cem Keser A, Li Y, Tkachov G 2020 2D Mater. 7 022007Google Scholar

    [29]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [30]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [31]

    Wu J, Liu J, Liu X J 2014 Phys. Rev. Lett. 113 136403Google Scholar

    [32]

    Zhang C, Fukami S, Watanabe K, Ohkawara A, DuttaGupta S, Sato H, Matsukura F, Ohno H 2016 Appl. Phys. Lett. 109 192405Google Scholar

    [33]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [34]

    Ramaswamy R, Qiu X, Dutta T, Pollard S D, Yang H 2016 Appl. Phys. Lett. 108 202406Google Scholar

    [35]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [36]

    Akyol M, Jiang W, Yu G, Fan Y, Gunes M, Ekicibil A, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 109 022403Google Scholar

    [37]

    Laczkowski P, Rojas-Sánchez J C, Savero-Torres W, Jaffrès H, Reyren N, Deranlot C, Notin L, Beigné C, Marty A, Attané J P, Vila L, George J M, Fert A 2014 Appl. Phys. Lett. 104 142403Google Scholar

    [38]

    Laczkowski P, Fu Y, Yang H, Rojas-Sánchez J C, Noel P, Pham V T, Zahnd G, Deranlot C, Collin S, Bouard C, Warin P, Maurel V, Chshiev M, Marty A, Attané J P, Fert A, Jaffrès H, Vila L, George J M 2017 Phys. Rev. B 96 140405Google Scholar

    [39]

    Zhu L, Ralph Daniel C, Buhrman R A 2018 Phys. Rev. Appl. 10 031001Google Scholar

    [40]

    Nguyen M H, Shi S, Rowlands G E, Aradhya S V, Jermain C L, Ralph D C, Buhrman R A 2018 Appl. Phys. Lett. 112 062404Google Scholar

    [41]

    Yamanouchi M, Chen L, Kim J, Hayashi M, Sato H, Fukami S, Ikeda S, Matsukura F, Ohno H 2013 Appl. Phys. Lett. 102 212408Google Scholar

    [42]

    Wen Y, Wu J, Li P, Zhang Q, Zhao Y, Manchon A, Xiao J Q, Zhang X 2017 Phys. Rev. B 95 104403Google Scholar

    [43]

    Zhang X, Mao J, Chang M X, Yan Z, Zuo Y, Xi L 2020 J. Phys. D: Appl. Phys. 53 225003Google Scholar

    [44]

    Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403Google Scholar

    [45]

    Wu C N, Lin Y H, Fanchiang Y T, Hung H Y, Lin H Y, Lin P H, Lin J G, Lee S F, Hong M, Kwo J 2015 J. Appl. Phys. 117 17D148Google Scholar

    [46]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [47]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [48]

    Shi S, Wang A, Wang Y, Ramaswamy R, Shen L, Moon J, Zhu D, Yu J, Oh S, Feng Y, Yang H 2018 Phys. Rev. B 97 041115Google Scholar

    [49]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [50]

    Shao Q, Wu H, Pan Q, Zhang P, Pan L, Wong K, Che X, Wang K L 2018 IEEE International Electron Devices Meeting San Francisco, CA , 2018-12 pp36.3.1–36.3. 4

    [51]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [52]

    Dc M, Grassi R, Chen J Y, Jamali M, Reifsnyder Hickey D, Zhang D, Zhao Z, Li H, Quarterman P, Lü Y, Li M, Manchon A, Mkhoyan K A, Low T, Wang J P 2018 Nat. Mater. 17 800Google Scholar

    [53]

    Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sánchez J, Mangin S, Wang K L 2019 Adv. Mater. 31 1901681Google Scholar

    [54]

    Wu H, Zhang P, Deng P, Lan Q, Pan Q, Razavi S A, Che X, Huang L, Dai B, Wong K, Han X, Wang K L 2019 Phys. Rev. Lett. 123 207205Google Scholar

    [55]

    Che X, Pan Q, Vareskic B, Zou J, Pan L, Zhang P, Yin G, Wu H, Shao Q, Deng P, Wang K L 2020 Adv. Mater. 32 1907661Google Scholar

    [56]

    Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lü Y, Zhao Z, Nikolić B K, Mkhoyan K A, Samarth N, Wang J P 2015 Nano Lett. 15 7126Google Scholar

    [57]

    Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nanotechnol. 11 352Google Scholar

    [58]

    Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [59]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [60]

    Lu Q, Li P, Guo Z, Dong G, Peng B, Zha X, Min T, Zhou Z, Liu M 2022 Nat. Commun. 13 1650Google Scholar

    [61]

    Dc M, Chen J Y, Peterson T, Sahu P, Ma B, Mousavi N, Harjani R, Wang J P 2019 Nano Lett. 19 4836Google Scholar

    [62]

    Zhang X, Zhang J, Zhai Y, Bai Q, Chang M, Yan Z, Zuo Y, Xi L 2021 Phys. Status Solidi RRL 15 2100327Google Scholar

    [63]

    Zhang X, Cui B, Mao J, Yun J, Yan Z, Chang M, Zuo Y, Xi L 2020 Phys. Status Solidi RRL 14 2000033Google Scholar

    [64]

    Cui B, Chen A, Zhang X, Fang B, Zeng Z, Zhang P, Zhang J, He W, Yu G, Yan P, Han X, Wang K L, Zhang X, Wu H 2023 Adv. Mater. 35 2302350Google Scholar

    [65]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [66]

    Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q 2016 2D Mater. 3 031009Google Scholar

    [67]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [68]

    Song T, Sun Q C, Anderson E, Wang C, Qian J, Taniguchi T, Watanabe K, McGuire M A, Stöhr R, Xiao D, Cao T, Wrachtrup J, Xu X 2021 Science 374 1140Google Scholar

    [69]

    Liu S, Yang K, Liu W, Zhang E, Li Z, Zhang X, Liao Z, Zhang W, Sun J, Yang Y, Gao H, Huang C, Ai L, Wong P K J, Wee A T S, N’Diaye A T, Morton S A, Kou X, Zou J, Xu Y, Wu H, Xiu F 2020 Natl. Sci. Rev. 7 745Google Scholar

    [70]

    Wu Y, Francisco B, Chen Z, Wang W, Zhang Y, Wan C, Han X, Chi H, Hou Y, Lodesani A, Yin G, Liu K, Cui Y tao, Wang K L, Moodera J S 2022 Adv. Mater. 34 2110583Google Scholar

    [71]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [72]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z 2018 Nat. Nanotechnol. 13 554Google Scholar

    [73]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [74]

    Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [75]

    Chen S, Huang C, Sun H, Ding J X, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [76]

    Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214Google Scholar

    [77]

    Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, Yu G Q 2023 Chin. Phys. Lett. 40 058501Google Scholar

    [78]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [79]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

    [80]

    Zheng Y, Ma X, Yan F, Lin H, Zhu W, Ji Y, Wang R, Wang K 2022 NPJ 2D Mater. Appl. 6 62Google Scholar

    [81]

    Lin H, Yan F, Hu C, Lü Q, Zhu W, Wang Z, Wei Z, Chang K, Wang K 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [82]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patane A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [83]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [84]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [85]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [86]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [87]

    Li Q, He C, Wang Y, Liu E, Wang M, Wang Y, Zeng J, Ma Z, Cao T, Yi C, Wang N, Watanabe K, Taniguchi T, Shao L, Shi Y, Chen X, Liang S J, Wang Q H, Miao F 2018 Nano Lett. 18 7962Google Scholar

    [88]

    Zhao W, Fei Z, Song T, Choi H K, Palomaki T, Sun B, Malinowski P, McGuire M A, Chu J H, Xu X, Cobden D H 2020 Nat. Mater. 19 503Google Scholar

    [89]

    Fujimura R, Yoshimi R, Mogi M, Tsukazaki A, Kawamura M, Takahashi K S, Kawasaki M, Tokura Y 2021 Appl. Phys. Lett. 119 032402Google Scholar

    [90]

    Wang H, Wu H, Liu Y, Chen D, Pandey C, Yin J, Lei N, Zhang J, Lu H, Shi S, Li P, Fert A, Wang K L, Nie T, Zhao W 2021 arXiv: 2111.14128 [physics. app-ph

    [91]

    Shao Y, Lü W, Guo J, Qi B, Lü W, Li S, Guo G, Zeng Z 2020 Appl. Phys. Lett. 116 092401Google Scholar

    [92]

    Shin I, Cho W J, An E, Park S, Jeong H, Jang S, Baek W J, Park S Y, Yang D, Seo J H, Kim G, Ali M N, Choi S, Lee H, Kim J S, Kim S D, Lee G 2022 Adv. Mater. 34 2101730Google Scholar

    [93]

    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [94]

    Chen X, Wang H, Liu H, Wang C, Wei G, Fang C, Wang H, Geng C, Liu S, Li P, Yu H, Zhao W, Miao J, Li Y, Wang L, Nie T, Zhao J, Wu X 2022 Adv. Mater. 34 2106172Google Scholar

    [95]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [96]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187Google Scholar

    [97]

    Li J, Rashetnia M, Lohmann M, Koo J, Xu Y, Zhang X, Watanabe K, Taniguchi T, Jia S, Chen X, Yan B, Cui Y T, Shi J 2022 Nat. Commun. 13 5134Google Scholar

  • [1] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应.  , 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [4] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长.  , 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [5] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控.  , 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [6] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [9] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [10] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [11] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [12] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展.  , 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [13] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [14] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [15] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [16] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [17] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [18] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [19] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展.  , 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  4069
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 修回日期:  2023-08-28
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map