搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度弱敏感光纤高温压力传感器

王伟 李金洋 毛国培 杨艳 高志强 马骢 钟翔雨 史青

引用本文:
Citation:

温度弱敏感光纤高温压力传感器

王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青

Optical fiber high-temperature pressure sensor with weak temperature sensitivity

Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing
PDF
HTML
导出引用
  • 针对高温压力测量需求, 提出了一种温度弱敏感的光纤微机械电子(MEMS)压力传感技术. 该技术采用非本征光纤法布里-珀罗干涉模型, 利用MEMS压力敏感膜片对干涉光信号进行被动调制, 进而实现压力信号测量. 通过仿真计算热应力和材料自身热膨胀引入的温度寄生响应来分析温度信号对膜片位移的影响. 在此基础上结合亚微米级白光干涉响应技术和低热应力封装工艺, 研制了高温压力传感器样机. 实验测试结果表明, 在20—400 ℃范围内, 可满足0—100 kPa压力测量, 由温度变化引入测量误差低于4%.
    In aerospace, petrochemical, gas turbines and other high-temperature environments, pressure measurement of equipment has always been a challenge to be solved. The electrical high temperature pressure sensor has the problem of component failure in high temperature environment, and it is difficult to use in the high temperature environment for a long time. The detection device of the optical fiber sensor does not include electrical components, so it has the advantages of high working temperature, high measurement accuracy, anti-electromagnetic interference and so on. In order to use a sensor to measure pressure in high temperature environment, a temperature-weakly sensitive optical fiber micro-electro-mechanical system (MEMS) pressure sensing technology is proposed. The technique uses extrisic Fabry-Pérot interference (EFPI) model. It uses the MEMS pressure chip to passively modulate the optical signal of the interference, and then realizes the pressure signal measurement. Among them, MEMS pressure sensitive chip is the core component of the sensor. The MEMS pressure sensitive chip adopts the design method of all solid state vacuum absolute pressure. Change in environmental pressure will deform the membrane. This phenomenon can cause change in the cavity of the EFPI cavity. Therefore, stress information can be obtained by measuring changes in EFPI cavity. The thermal stress and temperature parasitical response introduced by thermal expansion of the material are calculated by simulation. The influence of temperature signal on chip displacement is analyzed by the above results. On this basis, a prototype of high temperature pressure sensor is developed by combining the sub-micron white light interference response technology and low thermal stress packaging technology. In order to test the ability of the sensor to implement actual measurement, this paper carry out the pressure test and high temperature test respectively. When the pressure changes from 0 kPa to 100 kPa, the spectral intensity of the sensor output has a linear relationship with the pressure. During the temperature changing from 20–400 ℃, the spectral intensity of the sensor output does not change significantly. The experimental test results show that the pressure measurement of 0–100 kPa can be satisfied in the range of 20–400 ℃, and the measurement error introduced by temperature change is less than 4%. Therefore, the fiber pressure sensor can be used to measure the pressure in high temperature environment.
    [1]

    Wang Z, Chen J, Wei H, Liu H, Ma Z, Chen N, Wang T, Pang F 2020 Appl. Opt. 59 5189Google Scholar

    [2]

    Li W W, Liang T, Jia P G, Lei C, Hong Y P, Li Y W, Yao Z, Liu W Y, Xiong J J 2019 Appl. Opt. 58 1662Google Scholar

    [3]

    Ma W Y, Jiang Y, Gao H C 2019 Meas. Sci. Technol. 30 025104Google Scholar

    [4]

    何文涛, 李艳华, 邹江波, 张世名, 赵和平, 金小锋, 杨龙 2016 遥测遥控 37 61Google Scholar

    He W T, Li Y H, Zou J B, Zhang S M, Zhao H P, Jin X F, Yang L 2016 J. Telem. Track. Command. 37 61Google Scholar

    [5]

    Guo S W, Eriksen H, Childress K, Fink A, Hoffman M 2009 Sens. Actuator A Phys. 154 255Google Scholar

    [6]

    李达, 白雪平, 王文祥, 易丛, 李刚, 贾鲁生, 李书兆 2018 中国海上油气 30 196

    Li D, Bai X P, Wang W X, Yi C, Li G, Jia L S, Li S Z 2018 China Offshore Oil Gas 30 196

    [7]

    Fraga M A, Furlan H, Pessoa R S, Massi M 2014 Microsyst. Technol. 20 9Google Scholar

    [8]

    施兴华, 路瑞, 杭岑, 稽春艳 2016 中国海洋平台 45 135

    Shi X H, Lu R, Hang C, Ji C Y 2016 China Offshore Platf. 45 135

    [9]

    刘铁根, 王双, 江俊峰, 刘琨, 尹金德 2014 仪器仪表学报 35 1681

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681

    [10]

    Ma Z B, Cheng S L, Kou W Y, Chen H B, Wang W, Zhang X X, Guo T X 2019 Sensors 19 4097Google Scholar

    [11]

    Dai L H, Wang M, Cai D Y, Rong H, Zhu J L, Jia S, You J J 2013 IEEE Photon. Technol. Lett. 25 2505Google Scholar

    [12]

    Yu Q X, Zhou X L 2011 Photonic Sens. 1 72Google Scholar

    [13]

    Chen X Z, Tong X L, Zhang C, Deng C W, Mao Y, Chen S M 2022 Opt. Commun. 506 127580Google Scholar

    [14]

    毛国培, 李金洋, 史青 2020 遥测遥控 41 12

    Mao G P, Li J Y, Shi Q 2020 J. Telem. Track. Command. 41 12

    [15]

    Harpin A 2009 Sensor and Test Conference Nuremberg, Germany, May 26–28, 2009 p89

    [16]

    Pechstedt R D 2013 Fifth European Workshop on Optical Fibre Sensors Krakow, Poland, May 19–22, 2013 p879405

    [17]

    Sposito A, Pechstedt R D 2016 Metrology for Aerospace. IEEE Florence, Italy, June 22–23, 2016 p97

    [18]

    Yi J H, Lally E, Wang A B, Xu Y 2011 IEEE Photon. Technol. Lett. 23 9Google Scholar

    [19]

    Mills D A, Alexander D, Subhash G, Sheplak M 2014 SPIE Sensing Technology + Applications Baltimore, MD, United States, June 5–6, 2014 p9113

    [20]

    Zhou H C, Mills D A, Vera A, Garraud A, Oates W, Sheplak M 2019 AIAA Scitech 2019 Forum San Diego, California, January 7–11, 2019 p2044

    [21]

    Tomboza W, Cotillard R, Roussel N, Huy M C P, Bouwmans G, Laffont G 2022 Optica Advanced Photonics Congress Maastricht, Limburg Netherlands, July 24–28, 2022 pBTh2A. 3

    [22]

    饶云江 2009 电子科技大学学报 38 487

    Rao Y J 2009 J. Univ. Electron. Sci. Technol. China 38 487

    [23]

    张硕, 江毅 2018 仪表技术与传感器 1 10

    Zhang S, Jiang Y 2018 Instrum. Tech. Sens. 1 10

    [24]

    Zhang Y T, Jiang Y, Cui Y, Feng X X, Hu J 2022 Meas. Sci. Technol. 33 055117Google Scholar

    [25]

    盛天宇, 李建, 李鸿昌, 蒋永刚 2022 中国机械工程 33 1803Google Scholar

    Sheng T Y, Li J, Li H C, Jiang Y G 2022 Chin. J. Mech. Eng. En. 33 1803Google Scholar

    [26]

    郭雪涛 2019 硕士学位论文 (西安: 西北工业大学)

    Guo X T 2019 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [27]

    陈青青, 唐瑛, 王可宁, 陈海滨, 马志波 2018 激光与光电子学进展 55 110603Google Scholar

    Chen Q Q, Tang Y, Wang K N, Chen H B, Ma Z B 2018 Laser Optoelectron. Prog. 55 110603Google Scholar

    [28]

    李奇思 2019 硕士学位论文 (太原: 中北大学)

    Li Q S 2019 M. S. Thesis (Taiyuan: North University of China

    [29]

    颜维海 2022 硕士学位论文 (西安: 西安工业大学)

    Yan W H 2022 M. S. Thesis (Xi’an: Xi’an Technological University

    [30]

    Li J S, Jia P G, Fang G C, Wang J, Qian J, Ren Q Y, Xiong J J 2022 Sens. Actuator A Phys. 334 113363Google Scholar

    [31]

    何文涛, 赵光再, 宁佳晨, 李金洋, 史青 2019 遥测遥控 40 17

    He W T, Zhao G Z, Ning J C, Li J Y, Shi Q 2019 J. Telem. Track. Command. 40 17

    [32]

    徐鹏柏 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Xu P B 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [33]

    张伟航 2016 硕士学位论文 (天津: 天津大学)

    Zhang W H 2016 M. S. Thesis (Tianjin: Tianjin University

  • 图 1  光纤压力传感器模型

    Fig. 1.  Fiber optic pressure sensor model.

    图 2  压力敏感芯片结构模型

    Fig. 2.  Structural model of the pressure-sensitive chip.

    图 3  压力敏感芯片中光路传播示意图

    Fig. 3.  Diagram of light path propagation in pressure sensitive chip.

    图 4  光纤解调系统

    Fig. 4.  Fiber optic demodulation system.

    图 5  热应力影响

    Fig. 5.  Influence of thermal stress.

    图 6  敏感芯片受力位移模型

    Fig. 6.  Force displacement model of pressure sensitive chip.

    图 7  敏感芯片制备工艺流程图

    Fig. 7.  Chip preparation process steps.

    图 8  绝压敏感芯片

    Fig. 8.  Absolute pressure sensitive chip.

    图 9  传感器熔接元件 (a) 敏感芯片与玻璃管熔接部位; (b) 插芯与玻璃管熔接部位

    Fig. 9.  Sensor welding element: (a) Welding position of sensitive chip and glass tube; (b) core and glass tube welding position.

    图 10  传感器实物封装结构

    Fig. 10.  Sensor package structure.

    图 11  实验测试设备 (a) 压力箱; (b) 管式炉

    Fig. 11.  Sensor test equipment: (a) Pressure chamber; (b) tubular furnace.

    图 12  20 ℃下, 传感器压力变化反射光谱 (a) 100 kPa; (b) 0 kPa; (c) 100 kPa

    Fig. 12.  Sensor pressure change reflection spectrum at 20 ℃: (a) 100 kPa; (b) 0 kPa; (c) 100 kPa.

    图 13  传感器光谱强度随压力实时变化

    Fig. 13.  Sensor spectral intensity varies with pressure in real time.

    图 14  传感器光谱强度随压力变化关系

    Fig. 14.  Sensor spectral intensity varies with the pressure.

    图 15  常压100 kPa下, 传感器温度变化反射光谱 (a) 20 ℃; (b) 400 ℃; (c) 20 ℃

    Fig. 15.  Sensor temperature change reflection spectrum at normal pressure of 100 kPa: (a) 20 ℃; (b) 400 ℃; (c) 20 ℃.

    图 16  传感器相对强度随温度变化关系

    Fig. 16.  Sensor strength varies with the temperature.

    表 1  敏感芯片的结构参数

    Table 1.  Structural parameters of the chip.

    结构芯片
    直径
    芯片
    厚度
    感压腔
    直径
    感压
    膜厚
    腔体
    长度
    尺寸/mm20.71.40.080.002
    下载: 导出CSV
    Baidu
  • [1]

    Wang Z, Chen J, Wei H, Liu H, Ma Z, Chen N, Wang T, Pang F 2020 Appl. Opt. 59 5189Google Scholar

    [2]

    Li W W, Liang T, Jia P G, Lei C, Hong Y P, Li Y W, Yao Z, Liu W Y, Xiong J J 2019 Appl. Opt. 58 1662Google Scholar

    [3]

    Ma W Y, Jiang Y, Gao H C 2019 Meas. Sci. Technol. 30 025104Google Scholar

    [4]

    何文涛, 李艳华, 邹江波, 张世名, 赵和平, 金小锋, 杨龙 2016 遥测遥控 37 61Google Scholar

    He W T, Li Y H, Zou J B, Zhang S M, Zhao H P, Jin X F, Yang L 2016 J. Telem. Track. Command. 37 61Google Scholar

    [5]

    Guo S W, Eriksen H, Childress K, Fink A, Hoffman M 2009 Sens. Actuator A Phys. 154 255Google Scholar

    [6]

    李达, 白雪平, 王文祥, 易丛, 李刚, 贾鲁生, 李书兆 2018 中国海上油气 30 196

    Li D, Bai X P, Wang W X, Yi C, Li G, Jia L S, Li S Z 2018 China Offshore Oil Gas 30 196

    [7]

    Fraga M A, Furlan H, Pessoa R S, Massi M 2014 Microsyst. Technol. 20 9Google Scholar

    [8]

    施兴华, 路瑞, 杭岑, 稽春艳 2016 中国海洋平台 45 135

    Shi X H, Lu R, Hang C, Ji C Y 2016 China Offshore Platf. 45 135

    [9]

    刘铁根, 王双, 江俊峰, 刘琨, 尹金德 2014 仪器仪表学报 35 1681

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681

    [10]

    Ma Z B, Cheng S L, Kou W Y, Chen H B, Wang W, Zhang X X, Guo T X 2019 Sensors 19 4097Google Scholar

    [11]

    Dai L H, Wang M, Cai D Y, Rong H, Zhu J L, Jia S, You J J 2013 IEEE Photon. Technol. Lett. 25 2505Google Scholar

    [12]

    Yu Q X, Zhou X L 2011 Photonic Sens. 1 72Google Scholar

    [13]

    Chen X Z, Tong X L, Zhang C, Deng C W, Mao Y, Chen S M 2022 Opt. Commun. 506 127580Google Scholar

    [14]

    毛国培, 李金洋, 史青 2020 遥测遥控 41 12

    Mao G P, Li J Y, Shi Q 2020 J. Telem. Track. Command. 41 12

    [15]

    Harpin A 2009 Sensor and Test Conference Nuremberg, Germany, May 26–28, 2009 p89

    [16]

    Pechstedt R D 2013 Fifth European Workshop on Optical Fibre Sensors Krakow, Poland, May 19–22, 2013 p879405

    [17]

    Sposito A, Pechstedt R D 2016 Metrology for Aerospace. IEEE Florence, Italy, June 22–23, 2016 p97

    [18]

    Yi J H, Lally E, Wang A B, Xu Y 2011 IEEE Photon. Technol. Lett. 23 9Google Scholar

    [19]

    Mills D A, Alexander D, Subhash G, Sheplak M 2014 SPIE Sensing Technology + Applications Baltimore, MD, United States, June 5–6, 2014 p9113

    [20]

    Zhou H C, Mills D A, Vera A, Garraud A, Oates W, Sheplak M 2019 AIAA Scitech 2019 Forum San Diego, California, January 7–11, 2019 p2044

    [21]

    Tomboza W, Cotillard R, Roussel N, Huy M C P, Bouwmans G, Laffont G 2022 Optica Advanced Photonics Congress Maastricht, Limburg Netherlands, July 24–28, 2022 pBTh2A. 3

    [22]

    饶云江 2009 电子科技大学学报 38 487

    Rao Y J 2009 J. Univ. Electron. Sci. Technol. China 38 487

    [23]

    张硕, 江毅 2018 仪表技术与传感器 1 10

    Zhang S, Jiang Y 2018 Instrum. Tech. Sens. 1 10

    [24]

    Zhang Y T, Jiang Y, Cui Y, Feng X X, Hu J 2022 Meas. Sci. Technol. 33 055117Google Scholar

    [25]

    盛天宇, 李建, 李鸿昌, 蒋永刚 2022 中国机械工程 33 1803Google Scholar

    Sheng T Y, Li J, Li H C, Jiang Y G 2022 Chin. J. Mech. Eng. En. 33 1803Google Scholar

    [26]

    郭雪涛 2019 硕士学位论文 (西安: 西北工业大学)

    Guo X T 2019 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [27]

    陈青青, 唐瑛, 王可宁, 陈海滨, 马志波 2018 激光与光电子学进展 55 110603Google Scholar

    Chen Q Q, Tang Y, Wang K N, Chen H B, Ma Z B 2018 Laser Optoelectron. Prog. 55 110603Google Scholar

    [28]

    李奇思 2019 硕士学位论文 (太原: 中北大学)

    Li Q S 2019 M. S. Thesis (Taiyuan: North University of China

    [29]

    颜维海 2022 硕士学位论文 (西安: 西安工业大学)

    Yan W H 2022 M. S. Thesis (Xi’an: Xi’an Technological University

    [30]

    Li J S, Jia P G, Fang G C, Wang J, Qian J, Ren Q Y, Xiong J J 2022 Sens. Actuator A Phys. 334 113363Google Scholar

    [31]

    何文涛, 赵光再, 宁佳晨, 李金洋, 史青 2019 遥测遥控 40 17

    He W T, Zhao G Z, Ning J C, Li J Y, Shi Q 2019 J. Telem. Track. Command. 40 17

    [32]

    徐鹏柏 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Xu P B 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [33]

    张伟航 2016 硕士学位论文 (天津: 天津大学)

    Zhang W H 2016 M. S. Thesis (Tianjin: Tianjin University

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法.  , 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能.  , 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [3] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟.  , 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [4] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响.  , 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [5] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展.  , 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究.  , 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [7] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究.  , 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [8] 王骏, 崔萌, 陆红, 汪丽, 闫庆, 刘晶晶, 华灯鑫. 基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究.  , 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [9] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [10] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展.  , 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [11] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用.  , 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [12] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究.  , 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [13] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系.  , 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [14] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量.  , 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [15] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [16] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究.  , 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [17] 马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究.  , 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [18] 樊振军, 耿学文, 孔文婕, 金贻荣. D相AlCuCo准晶各向异性热电势的测量.  , 2009, 58(10): 7119-7123. doi: 10.7498/aps.58.7119
    [19] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度.  , 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [20] 李公平, 张梅玲. 铜团簇(n=55)结构及能量随温度演变的Monte Carlo 模拟研究.  , 2005, 54(6): 2873-2876. doi: 10.7498/aps.54.2873
计量
  • 文章访问数:  2430
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-08-16
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map