-
Deep ultraviolet (DUV) femtosecond laser, which combines the advantages of high single-photon energy of DUV laser with high peak power of femtosecond laser, is widely used in scientific research, biomedicine, material processing and so on. However, in the process of generating DUV femtosecond laser based on nonlinear frequency conversion is encountered a problem that the group velocity mismatch caused by dispersion makes the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, thus making the generation of the DUV femtosecond laser very difficult. In this work, based on a Yb-doped fiber femtosecond laser, the delay line is optimized to precisely compensate for the spatial and temporal walk-off, so DUV femtosecond laser possesses the following performances: the center wavelength is 206 nm, the repetition rate is 1 MHz, the maximum output power is 102 mW, the maximum conversion efficiency is 4.25% from near infrared to DUV, the root mean square (RMS) power stability is 0.88% within 3 h, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality in the process of second harmonic generation (SHG), fourth harmonic generation (FHG) and sum-frequency generation (SFG) are also systematically studied. The experimental results provide a basis for generating DUV femtosecond laser from femtosecond fiber lasers.
[1] Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425Google Scholar
[2] Kang Y F, Zhao J Y, Wu J X, Zhang L, Zhao J, Zhang Y Q, Zhao Y Q, Wang X F 2020 IEEE T. Electron Dev. 67 3391Google Scholar
[3] Herman P R, Marjoribanks R S, Oettl A, Chen K, Konovalov I, Ness S 2000 Appl. Surf. Sci. 154 577
[4] Stern R S, Zierler S, Parrish J A 1980 Lancet 315 732Google Scholar
[5] Vengris M, Gabryte E, Aleknavicius A, Barkauskas M, Ruksenas O, Vaiceliunaite A, Danielius R 2010 J. Cataract Refract. Surg. 36 1579Google Scholar
[6] Kohler B, Andres T, Nebel A, Wallenstein R 2000 Conference on Lasers and Electro-Optics San Jose, The United States of America, May 9, 2000 p142
[7] Turcicova H, Novak O, Roskot L, Smrz M, Mocek T 2019 Opt. Express 27 24286Google Scholar
[8] Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar
[9] Chu Y X, Zhang X D, Chen B B, Wang J Z, Yang J H, Jiang R, Hu M L 2021 Opt. Laser Technol. 134 1
[10] Willenberg B, Brunner F, Phillips C R, Keller U 2019 Conference on Lasers and Electro-Optics San Jose, USA, March 16, 2019 p1
[11] Cui Z J, Sun M Y, Liu D A, Zhu J Q 2022 Opt. Express 30 43354Google Scholar
[12] Fu X Y, Chen Z D, Han D D, Zhang Y L, Xia H, Sun H B 2020 Photonics Res. 8 577Google Scholar
[13] Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L, Wang Q Y 2019 Chin. Opt. Lett. 17 041404Google Scholar
[14] Zhang X, Wang Z M, Luo S Y, Wang G L, Zhu Y, Xu Z Y, Chen C T 2011 Appl. Phys. B 102 825Google Scholar
[15] Wang G L, Wang X Y, Zhou Y, Li C M, Zhu Y, Xu Z Y, Chen C T 2008 Appl. Opt. 47 486Google Scholar
[16] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 64 164205Google Scholar
Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar
[17] Susnjar P, Demidovich A, Kurdi G, Cinquegrana P, Nikolov I, Sigalotti P, Danailov M B 2023 Opt. Commun. 528 129031Google Scholar
[18] Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1 Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1
[19] Chaitanya N A, Aadhi A, Jabir M V, Samanta G K 2015 Opt. Lett. 40 4269Google Scholar
[20] Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 2284
[21] Ran Q D, Short J S, Wang Q J, Li H 2023 Front. Phys. 10 1391
-
图 1 实验装置示意图. λ/2, 半波片; TFP, 薄膜偏振片; M1—M5, 1030 nm反射镜; M6, M7, 515 nm反射镜; F1, 450 mm透镜; F2, 125 mm透镜; F3, 150 mm透镜; DM1, DM2, 双色镜; SHG, 3 mm LBO倍频晶体; FHG, 1 mm BBO四倍频晶体; FiHG, 1 mm BBO五倍频晶体; PP, 佩林布洛卡棱镜
Fig. 1. Schematic of experimental setup. λ/2, half-wave plate; TFP, thin-film polarizer; M1—M5, plano mirror at 1030 nm; M6, M7, plano mirror at 515 nm; F1, 450 mm lenses; F2, 125 mm lenses; F3, 150 mm lenses; DM1, DM2, dichroic mirror; SHG, second harmonic generation, 3 mm LBO crystal; FHG, fourth harmonic generation, 1 mm BBO crystal; FiHG, fifth harmonic generation, 1 mm BBO crystal; PP, Pellin-Broca prism.
图 5 (a) 五倍频光的平均功率和五倍频转换效率随入射基频光功率变化关系图, 插图为最高功率输出时的五倍频光光斑图; (b) 五倍频光的平均功率随延迟线系统位置变化关系图, 插图为BBO晶体表面膜损伤; (c) 五倍频光谱图; (d) 功率稳定性测试
Fig. 5. (a) Average output power and conversion efficiency of the FiH beam as functions of the fundamental power, inset, the near-field beam profile of the FiH beam at maximum average power output; (b) average output power of the FiH beam as functions of the location. Inset, damage to the surface film of the BBO crystal; (c) spectrum of the FiH; (d) power stability tests.
表 1 基频光和四倍频光之间的时间走离
Table 1. Delay time between fourth harmonic and fundamental frequency laser.
LBO F2 F3 BBO (FHG) BBO (FiHG) Δt/fs 155.8 337.6 409.2 1042.5 1327.1 -
[1] Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425Google Scholar
[2] Kang Y F, Zhao J Y, Wu J X, Zhang L, Zhao J, Zhang Y Q, Zhao Y Q, Wang X F 2020 IEEE T. Electron Dev. 67 3391Google Scholar
[3] Herman P R, Marjoribanks R S, Oettl A, Chen K, Konovalov I, Ness S 2000 Appl. Surf. Sci. 154 577
[4] Stern R S, Zierler S, Parrish J A 1980 Lancet 315 732Google Scholar
[5] Vengris M, Gabryte E, Aleknavicius A, Barkauskas M, Ruksenas O, Vaiceliunaite A, Danielius R 2010 J. Cataract Refract. Surg. 36 1579Google Scholar
[6] Kohler B, Andres T, Nebel A, Wallenstein R 2000 Conference on Lasers and Electro-Optics San Jose, The United States of America, May 9, 2000 p142
[7] Turcicova H, Novak O, Roskot L, Smrz M, Mocek T 2019 Opt. Express 27 24286Google Scholar
[8] Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar
[9] Chu Y X, Zhang X D, Chen B B, Wang J Z, Yang J H, Jiang R, Hu M L 2021 Opt. Laser Technol. 134 1
[10] Willenberg B, Brunner F, Phillips C R, Keller U 2019 Conference on Lasers and Electro-Optics San Jose, USA, March 16, 2019 p1
[11] Cui Z J, Sun M Y, Liu D A, Zhu J Q 2022 Opt. Express 30 43354Google Scholar
[12] Fu X Y, Chen Z D, Han D D, Zhang Y L, Xia H, Sun H B 2020 Photonics Res. 8 577Google Scholar
[13] Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L, Wang Q Y 2019 Chin. Opt. Lett. 17 041404Google Scholar
[14] Zhang X, Wang Z M, Luo S Y, Wang G L, Zhu Y, Xu Z Y, Chen C T 2011 Appl. Phys. B 102 825Google Scholar
[15] Wang G L, Wang X Y, Zhou Y, Li C M, Zhu Y, Xu Z Y, Chen C T 2008 Appl. Opt. 47 486Google Scholar
[16] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 64 164205Google Scholar
Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar
[17] Susnjar P, Demidovich A, Kurdi G, Cinquegrana P, Nikolov I, Sigalotti P, Danailov M B 2023 Opt. Commun. 528 129031Google Scholar
[18] Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1 Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1
[19] Chaitanya N A, Aadhi A, Jabir M V, Samanta G K 2015 Opt. Lett. 40 4269Google Scholar
[20] Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 2284
[21] Ran Q D, Short J S, Wang Q J, Li H 2023 Front. Phys. 10 1391
计量
- 文章访问数: 2994
- PDF下载量: 179
- 被引次数: 0