搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤飞秒激光五倍频产生206 nm深紫外激光

石凉竹 张萌 储玉喜 刘博文 胡明列

引用本文:
Citation:

光纤飞秒激光五倍频产生206 nm深紫外激光

石凉竹, 张萌, 储玉喜, 刘博文, 胡明列

206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser

Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie
PDF
HTML
导出引用
  • 深紫外飞秒激光兼具深紫外激光单光子能量高和飞秒激光峰值功率高的优势, 这使得深紫外飞秒激光在半导体晶圆检测和角分辨光电子能谱等领域被广泛应用, 但是色散导致的群速度失配使得深紫外飞秒激光的输出变得十分困难, 本文基于掺镱光纤飞秒激光器, 实现了一种基于延迟线的深紫外飞秒激光脉冲产生方案. 通过优化延迟线精确补偿时间走离, 基于掺镱飞秒光纤激光五倍频获得了重复频率为1 MHz、中心波长为206 nm的深紫外飞秒激光输出, 其平均功率102 mW, 从近红外到深紫外的转换效率为4.25%.
    Deep ultraviolet (DUV) femtosecond laser, which combines the advantages of high single-photon energy of DUV laser with high peak power of femtosecond laser, is widely used in scientific research, biomedicine, material processing and so on. However, in the process of generating DUV femtosecond laser based on nonlinear frequency conversion is encountered a problem that the group velocity mismatch caused by dispersion makes the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, thus making the generation of the DUV femtosecond laser very difficult. In this work, based on a Yb-doped fiber femtosecond laser, the delay line is optimized to precisely compensate for the spatial and temporal walk-off, so DUV femtosecond laser possesses the following performances: the center wavelength is 206 nm, the repetition rate is 1 MHz, the maximum output power is 102 mW, the maximum conversion efficiency is 4.25% from near infrared to DUV, the root mean square (RMS) power stability is 0.88% within 3 h, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality in the process of second harmonic generation (SHG), fourth harmonic generation (FHG) and sum-frequency generation (SFG) are also systematically studied. The experimental results provide a basis for generating DUV femtosecond laser from femtosecond fiber lasers.
      通信作者: 胡明列, huminglie@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805174, 61535009, 61827821, 61377041, 11527808, U1730115)、广东省重点领域研发计划(批准号: 2020B090922004)和天津市自然科学基金(批准号: 20JCQNJC01180)资助的课题.
      Corresponding author: Hu Ming-Lie, huminglie@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805174, 61535009, 61827821, 61377041, 11527808, U1730115), the Research and Development Plan in Key Fields of Guangdong Province, China (Grant No. 2020B090922004), and the Natural Science Foundation of Tianjin, China (Grant No. 20JCQNJC01180).
    [1]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425Google Scholar

    [2]

    Kang Y F, Zhao J Y, Wu J X, Zhang L, Zhao J, Zhang Y Q, Zhao Y Q, Wang X F 2020 IEEE T. Electron Dev. 67 3391Google Scholar

    [3]

    Herman P R, Marjoribanks R S, Oettl A, Chen K, Konovalov I, Ness S 2000 Appl. Surf. Sci. 154 577

    [4]

    Stern R S, Zierler S, Parrish J A 1980 Lancet 315 732Google Scholar

    [5]

    Vengris M, Gabryte E, Aleknavicius A, Barkauskas M, Ruksenas O, Vaiceliunaite A, Danielius R 2010 J. Cataract Refract. Surg. 36 1579Google Scholar

    [6]

    Kohler B, Andres T, Nebel A, Wallenstein R 2000 Conference on Lasers and Electro-Optics San Jose, The United States of America, May 9, 2000 p142

    [7]

    Turcicova H, Novak O, Roskot L, Smrz M, Mocek T 2019 Opt. Express 27 24286Google Scholar

    [8]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar

    [9]

    Chu Y X, Zhang X D, Chen B B, Wang J Z, Yang J H, Jiang R, Hu M L 2021 Opt. Laser Technol. 134 1

    [10]

    Willenberg B, Brunner F, Phillips C R, Keller U 2019 Conference on Lasers and Electro-Optics San Jose, USA, March 16, 2019 p1

    [11]

    Cui Z J, Sun M Y, Liu D A, Zhu J Q 2022 Opt. Express 30 43354Google Scholar

    [12]

    Fu X Y, Chen Z D, Han D D, Zhang Y L, Xia H, Sun H B 2020 Photonics Res. 8 577Google Scholar

    [13]

    Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L, Wang Q Y 2019 Chin. Opt. Lett. 17 041404Google Scholar

    [14]

    Zhang X, Wang Z M, Luo S Y, Wang G L, Zhu Y, Xu Z Y, Chen C T 2011 Appl. Phys. B 102 825Google Scholar

    [15]

    Wang G L, Wang X Y, Zhou Y, Li C M, Zhu Y, Xu Z Y, Chen C T 2008 Appl. Opt. 47 486Google Scholar

    [16]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [17]

    Susnjar P, Demidovich A, Kurdi G, Cinquegrana P, Nikolov I, Sigalotti P, Danailov M B 2023 Opt. Commun. 528 129031Google Scholar

    [18]

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    [19]

    Chaitanya N A, Aadhi A, Jabir M V, Samanta G K 2015 Opt. Lett. 40 4269Google Scholar

    [20]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 2284

    [21]

    Ran Q D, Short J S, Wang Q J, Li H 2023 Front. Phys. 10 1391

  • 图 1  实验装置示意图. λ/2, 半波片; TFP, 薄膜偏振片; M1—M5, 1030 nm反射镜; M6, M7, 515 nm反射镜; F1, 450 mm透镜; F2, 125 mm透镜; F3, 150 mm透镜; DM1, DM2, 双色镜; SHG, 3 mm LBO倍频晶体; FHG, 1 mm BBO四倍频晶体; FiHG, 1 mm BBO五倍频晶体; PP, 佩林布洛卡棱镜

    Fig. 1.  Schematic of experimental setup. λ/2, half-wave plate; TFP, thin-film polarizer; M1—M5, plano mirror at 1030 nm; M6, M7, plano mirror at 515 nm; F1, 450 mm lenses; F2, 125 mm lenses; F3, 150 mm lenses; DM1, DM2, dichroic mirror; SHG, second harmonic generation, 3 mm LBO crystal; FHG, fourth harmonic generation, 1 mm BBO crystal; FiHG, fifth harmonic generation, 1 mm BBO crystal; PP, Pellin-Broca prism.

    图 2  (a) 基频光光谱图; (b) 基频光脉宽图, 插图为近场光斑图

    Fig. 2.  (a) Spectrum of the fundamental frequency laser; (b) pulse width of the fundamental frequency laser, and the inset is the near-field beam profile of the fundamental frequency laser.

    图 3  (a) 倍频光的平均功率和倍频转换效率随入射基频光功率变化关系图, 插图为最高平均功率输出时倍频光的近场光斑图; (b) 倍频光光谱图

    Fig. 3.  (a) Average output power and conversion efficiency of the SH beam as functions of the fundamental power, inset, the near-field beam profile of the SH beam at maximum average power output; (b) spectrum of the SH.

    图 4  (a) 四倍频光的平均功率和四倍频转换效率随入射基频光功率变化关系图, 插图为最高功率输出时的四倍频光光斑图; (b) 四倍频光光谱图

    Fig. 4.  (a) Average output power and conversion efficiency of the FH beam as functions of the fundamental power. Inset, the near-field beam profile of the FH beam at maximum average power output; (b) spectrum of the FH.

    图 5  (a) 五倍频光的平均功率和五倍频转换效率随入射基频光功率变化关系图, 插图为最高功率输出时的五倍频光光斑图; (b) 五倍频光的平均功率随延迟线系统位置变化关系图, 插图为BBO晶体表面膜损伤; (c) 五倍频光谱图; (d) 功率稳定性测试

    Fig. 5.  (a) Average output power and conversion efficiency of the FiH beam as functions of the fundamental power, inset, the near-field beam profile of the FiH beam at maximum average power output; (b) average output power of the FiH beam as functions of the location. Inset, damage to the surface film of the BBO crystal; (c) spectrum of the FiH; (d) power stability tests.

    表 1  基频光和四倍频光之间的时间走离

    Table 1.  Delay time between fourth harmonic and fundamental frequency laser.

    LBOF2F3BBO (FHG)BBO (FiHG)
    Δt/fs155.8337.6409.21042.51327.1
    下载: 导出CSV
    Baidu
  • [1]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425Google Scholar

    [2]

    Kang Y F, Zhao J Y, Wu J X, Zhang L, Zhao J, Zhang Y Q, Zhao Y Q, Wang X F 2020 IEEE T. Electron Dev. 67 3391Google Scholar

    [3]

    Herman P R, Marjoribanks R S, Oettl A, Chen K, Konovalov I, Ness S 2000 Appl. Surf. Sci. 154 577

    [4]

    Stern R S, Zierler S, Parrish J A 1980 Lancet 315 732Google Scholar

    [5]

    Vengris M, Gabryte E, Aleknavicius A, Barkauskas M, Ruksenas O, Vaiceliunaite A, Danielius R 2010 J. Cataract Refract. Surg. 36 1579Google Scholar

    [6]

    Kohler B, Andres T, Nebel A, Wallenstein R 2000 Conference on Lasers and Electro-Optics San Jose, The United States of America, May 9, 2000 p142

    [7]

    Turcicova H, Novak O, Roskot L, Smrz M, Mocek T 2019 Opt. Express 27 24286Google Scholar

    [8]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar

    [9]

    Chu Y X, Zhang X D, Chen B B, Wang J Z, Yang J H, Jiang R, Hu M L 2021 Opt. Laser Technol. 134 1

    [10]

    Willenberg B, Brunner F, Phillips C R, Keller U 2019 Conference on Lasers and Electro-Optics San Jose, USA, March 16, 2019 p1

    [11]

    Cui Z J, Sun M Y, Liu D A, Zhu J Q 2022 Opt. Express 30 43354Google Scholar

    [12]

    Fu X Y, Chen Z D, Han D D, Zhang Y L, Xia H, Sun H B 2020 Photonics Res. 8 577Google Scholar

    [13]

    Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L, Wang Q Y 2019 Chin. Opt. Lett. 17 041404Google Scholar

    [14]

    Zhang X, Wang Z M, Luo S Y, Wang G L, Zhu Y, Xu Z Y, Chen C T 2011 Appl. Phys. B 102 825Google Scholar

    [15]

    Wang G L, Wang X Y, Zhou Y, Li C M, Zhu Y, Xu Z Y, Chen C T 2008 Appl. Opt. 47 486Google Scholar

    [16]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [17]

    Susnjar P, Demidovich A, Kurdi G, Cinquegrana P, Nikolov I, Sigalotti P, Danailov M B 2023 Opt. Commun. 528 129031Google Scholar

    [18]

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    [19]

    Chaitanya N A, Aadhi A, Jabir M V, Samanta G K 2015 Opt. Lett. 40 4269Google Scholar

    [20]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 2284

    [21]

    Ran Q D, Short J S, Wang Q J, Li H 2023 Front. Phys. 10 1391

  • [1] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟.  , 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [2] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展.  , 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [4] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用.  , 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像.  , 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [7] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究.  , 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [8] 邓俊鸿, 李贵新. 非线性光学超构表面.  , 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [9] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用.  , 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [10] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用.  , 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [11] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器.  , 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [12] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究.  , 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [13] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性.  , 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [14] 孙博, 刘劲松, 凌福日, 王可嘉, 朱大庆, 姚建铨. 基于钽酸锂晶体的太赫兹波参量振荡器运转特性的研究.  , 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [15] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生.  , 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [16] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性.  , 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [17] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究.  , 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究.  , 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性.  , 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [20] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究.  , 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
计量
  • 文章访问数:  2994
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-27
  • 修回日期:  2023-07-29
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map