搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低活化马氏体钢中位错对氦辐照缺陷的影响

董烨 朱特 宋亚敏 叶凤娇 张鹏 杨启贵 刘福雁 陈雨 曹兴忠

引用本文:
Citation:

低活化马氏体钢中位错对氦辐照缺陷的影响

董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠

Effect of dislocation on helium irradiation defects in low-activation martensitic steel

Dong Ye, Zhu Te, Song Ya-Min, Ye Feng-Jiao, Zhang Peng, Yang Qi-Gui, Liu Fu-Yan, Chen Yu, Cao Xing-Zhong
PDF
HTML
导出引用
  • 低活化马氏体钢具有较好的抗辐照性能, 然而对其抗辐照机理尚不清楚, 特别是嬗变气体存在的情况下辐照缺陷行为非常复杂. 本文通过对低活化马氏体钢预形变(10%和20%)后热处理(723 K, 1 h)保留位错缺陷, 随后对预留位错的样品进行室温氦辐照(50 keV, 1×1017 He/cm2), 采用同步辐射掠入射X射线衍射、慢正电子多普勒展宽谱和热脱附谱研究了位错与氦辐照缺陷的相互作用及位错对氦原子迁移、热脱附行为的影响. 结果表明, 高密度位错阻碍了氦和氦空位复合体的扩散, 进而减缓了辐照损伤的扩展, 这种现象随着位错密度的增大更加明显. 低活化马氏体钢在1179 K 时发生体心立方结构→面心立方结构相转变, 位错密度增加会导致由相转变引起的氦热脱附峰前移. 未形变、10%形变、20%形变样品中氦的滞留量分别为10.3%, 15.7%, 17.9%, 表明高密度位错更容易将氦保留到材料内部, 反映了位错对氦的滞留起到促进作用.
    Reduced-activation martensitic steel is a main candidate structural material for key components of advanced nuclear energy systems because of its good mechanical properties at room temperature, low neutron activation characteristics and satisfactory radiation resistance. In this work, we study the interaction between dislocations and helium-irradiation-induced defects in the steel and the effect of dislocations on the behavior of helium migration and desorption. The well-annealed samples are pre-deformed to 10% and 20% reductions in thickness by using cold rolling mill. After pre-deformation, samples are heat-treated to remove vacancy defects and retain dislocation defects. Then, the samples with reserved dislocations are irradiated with helium at room temperature (50 keV, 1×1017 He/cm2). After irradiation, the samples are characterized by synchrotron radiation grazing incident X-Ray diffraction, positron annihilation Doppler broadening spectroscopy, and thermal desorption spectroscopy. The results show that dislocations hinder the diffusion of helium and helium-vacancy complexes, and reduce the accumulation of radiation damage. Such an effect becomes more significant with the increase of dislocation density. The BCC → FCC phase transition of low activation martensitic steel occurs at 1179 K. The increase of dislocation density will lead to the forward shift of helium desorption peak induced by phase transition. The retention of helium in the undeformed sample, 10% deformed sample and 20% deformed sample is 10.3%, 15.7% and 17.9%, respectively, indicating that high density dislocations promote the retention of helium.
      通信作者: 曹兴忠, caoxzh@ihep.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0210002)和国家自然科学基金(批准号: U1732265, 11775235, 12175262, 12005229)资助的课题.
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0210002) and the National Natural Science Foundation of China (Grant Nos. U1732265, 11775235, 12175262, 12005229).
    [1]

    Baluc N, Abe K, Boutard J L, Chernov V M, Diegele E, Jitsukawa S, Kimura A, Klueh R L, Kohyama A, Kurtz R J, Lässer R, Matsui H, Möslang A, Muroga T, Odette G R, Tran M Q, van der Schaaf B, Wu Y, Yu J, Zinkle S J 2007 Nucl. Fusion 47 S696Google Scholar

    [2]

    Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W 2009 J. Nucl. Mater. 386−388 411Google Scholar

    [3]

    Huang Q 2014 J. Nucl. Mater. 455 649Google Scholar

    [4]

    Niwase K, Ezawa T, Tanabe T, Kiritani M, Fujita F E 1993 J. Nucl. Mater. 203 56Google Scholar

    [5]

    Mansur L K, Coghlan W A 1983 J. Nucl. Mater. 119 1Google Scholar

    [6]

    Chernov I I, Kalashnikov A N, Kalin B A, Binyukova S Y 2003 J. Nucl. Mater. 323 341Google Scholar

    [7]

    Xu Q, Sugiura Y, Pan X Q, Sato K, Yoshiie T 2014 Mat. Sci. Eng. A-Struct. 612 41Google Scholar

    [8]

    Woodford D A, Smith J P, Moteff J 1969 J. Nucl. Mater. 29 103Google Scholar

    [9]

    van den Beukel A 1979 Scr. Metall. 13 83Google Scholar

    [10]

    Cao Q, Ju X, Guo L P, Wang B 2014 Fusion Eng. Des. 89 1101Google Scholar

    [11]

    van den Beukel A 2014 Chin. Phys. Lett. 31 036101Google Scholar

    [12]

    Sarkar D K, Bera S, Narasimhan S V, Chowdhury S, Gupta A, Nair K G M 1998 Solid State Commun. 107 413Google Scholar

    [13]

    Zhu T, Zhong Z H, Sato K, Song Y M, Ye F J, Wang Q Q, Dong Y, Zhang P, Yu R S, Wang B Y, Ngan A H W, Cao X Z, Xu Q 2022 Tungsten 4 212Google Scholar

    [14]

    Zhang Z, Zhu T, Jin S, Zhang P, Kuang P, Guo L P, An X, Wang B Y, Yu R, Zhang S, Cao X Z 2020 Fusion Eng. Des. 161 111978Google Scholar

    [15]

    Zhu T, Jin S, Gong Y, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar

    [16]

    Sabelová V, Kršjak V, Kuriplach J, Petriska M, Slugeň V, Šimeg Veterníková J 2014 J. Nucl. Mater. 450 54Google Scholar

    [17]

    Song Y M, Song L G, Lian X Y, Jin S X, Zhu T, Liu Y L, Zhang P, Wang B Y, Cao X Z 2023 JJAP Conference Proceedings 9 011103Google Scholar

    [18]

    Jin S X, Zhang P, Lu E Y, Guo L P, Wang B Y, Cao X Z 2016 Acta Mater. 103 658Google Scholar

    [19]

    King D A 1975 Surf. Sci. 47 384Google Scholar

    [20]

    Lombardo S J, Bell A T 1988 Surf. Sci. 206 101Google Scholar

    [21]

    Morishita K, Sugano R, Wirth B D, Diaz de la Rubia T 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 202 76Google Scholar

    [22]

    Zhang S, Cizek J, Yao Z, Oleksandr M, Kong X, Liu C, van Dijk N, van der Zwaag S 2020 J. Alloys Compd. 817 152765Google Scholar

    [23]

    Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243Google Scholar

    [24]

    Xu D, Bus T, Glade S C, Wirth B D 2007 J. Nucl. Mater. 367 483Google Scholar

    [25]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar

    [26]

    Yonemura M, Inoue K 2016 Metall. Mater. Trans. A 47 6384Google Scholar

    [27]

    Wang J R, Pan B C 2022 J. Nucl. Mater. 561 153540Google Scholar

  • 图 1  低活化马氏体钢的TEM图 (a) 1013 K退火; (b) 10%变形; (c) 20%变形. 在1013 K退火后的样品中观察到少量缺陷, 将退火样品冷轧变形10%和20%发现大量位错

    Fig. 1.  (a) TEM micrographs of the well-annealed sample, a small number of defects are observed. (b), (c) The image of the annealed specimens after cold-worked, a number of dislocations induced by cold rolling to 10% (b) and 20% (c) of their original thickness are observed.

    图 2  50 keV氦离子辐照低活化马氏体钢的辐照损伤以及氦原子深度分布的SRIM模拟(dpa, 原子平均离位; appm, 原子性部分每百万)

    Fig. 2.  Depth distribution of vacancies and helium atoms in 50 keV helium-ion irradiated low activation martensitic steel, calculated with SRIM 2013 (dpa, displacement per atom; appm, atomic parts per million).

    图 3  不同形变辐照条件下低活化马氏体钢的GIXRD谱图

    Fig. 3.  GIXRD patterns of low activation martensitic steel with different conditions.

    图 4  50 keV的氦辐照低活化马氏体钢的多普勒展宽谱 (a) S-E曲线; (b) W-E曲线; (c) S-W曲线

    Fig. 4.  Doppler broadening spectrum of low activation martensitic steel irradiated with 50 keV ion helium: (a) S-E curves, (b) W-E curves; (c) S-W curves.

    图 5  50 keV的氦辐照低活化马氏体钢的多普勒展宽谱 (a) ΔS-E曲线; (b) ΔW-E线

    Fig. 5.  Doppler broadening spectrum of low activation martensitic steel irradiated with 50 keV ion helium: (a) ΔS-E curves; (b) ΔW-E curves.

    图 6  低活化马氏体钢的热脱附谱图

    Fig. 6.  Helium thermal desorption spectra for low activation martensitic steel.

    表 1  低活化马氏体钢的化学成分

    Table 1.  Chemical composition of the low activation martensitic steel.

    元素CrVTaWCMnSiPSFe
    质量分数/%9.1000.1900.2001.5000.1200.4000.0250.0030.00388.459
    下载: 导出CSV

    表 2  同步辐射X射线衍射数据, 即不同形变辐照条件下低活化马氏体钢的2θ和FWHM

    Table 2.  Synchrotron radiation X-ray diffraction data, namely, 2θ and FWHM of low activation martensitic steel with different conditions.

    Sample 2θ/FWHM
    (110) (200) (211) (220)
    Undeform-unirra 44.553/0.302 64.894/0.355 82.327/0.401 98.9890/0.276
    Undeform-irradiate 44.500/0.416 64.653/0.473 82.167/0.610 98.780/0.366
    10%-unirra 44.566/0.359 64.902/0.466 82.330/0.583 99.008/0.355
    10%-irradiate 44.524/0.465 64.801/0.544 82.127/0.663 98.554/0.397
    20%-unirra 44.563/0.351 64.880/0.345 82.356/0.573 98.979/0.330
    20%-irradiate 44.154/0.474 64.249/0.478 82.054/0.694 98.749/0.736
    下载: 导出CSV

    表 3  低活化马氏体钢氦的热脱附能

    Table 3.  Desorption temperature and desorption activation energy.

    Peak Temperature/K Energy/eV
    Undeformed A2 1164 3.38
    A3 1179 3.41
    10% deformation B1 1073 3.11
    B2 1128 3.27
    B3 1149 3.33
    20% deformation C1 1028 2.98
    C2 1096 3.18
    C3 1115 3.23
    下载: 导出CSV
    Baidu
  • [1]

    Baluc N, Abe K, Boutard J L, Chernov V M, Diegele E, Jitsukawa S, Kimura A, Klueh R L, Kohyama A, Kurtz R J, Lässer R, Matsui H, Möslang A, Muroga T, Odette G R, Tran M Q, van der Schaaf B, Wu Y, Yu J, Zinkle S J 2007 Nucl. Fusion 47 S696Google Scholar

    [2]

    Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W 2009 J. Nucl. Mater. 386−388 411Google Scholar

    [3]

    Huang Q 2014 J. Nucl. Mater. 455 649Google Scholar

    [4]

    Niwase K, Ezawa T, Tanabe T, Kiritani M, Fujita F E 1993 J. Nucl. Mater. 203 56Google Scholar

    [5]

    Mansur L K, Coghlan W A 1983 J. Nucl. Mater. 119 1Google Scholar

    [6]

    Chernov I I, Kalashnikov A N, Kalin B A, Binyukova S Y 2003 J. Nucl. Mater. 323 341Google Scholar

    [7]

    Xu Q, Sugiura Y, Pan X Q, Sato K, Yoshiie T 2014 Mat. Sci. Eng. A-Struct. 612 41Google Scholar

    [8]

    Woodford D A, Smith J P, Moteff J 1969 J. Nucl. Mater. 29 103Google Scholar

    [9]

    van den Beukel A 1979 Scr. Metall. 13 83Google Scholar

    [10]

    Cao Q, Ju X, Guo L P, Wang B 2014 Fusion Eng. Des. 89 1101Google Scholar

    [11]

    van den Beukel A 2014 Chin. Phys. Lett. 31 036101Google Scholar

    [12]

    Sarkar D K, Bera S, Narasimhan S V, Chowdhury S, Gupta A, Nair K G M 1998 Solid State Commun. 107 413Google Scholar

    [13]

    Zhu T, Zhong Z H, Sato K, Song Y M, Ye F J, Wang Q Q, Dong Y, Zhang P, Yu R S, Wang B Y, Ngan A H W, Cao X Z, Xu Q 2022 Tungsten 4 212Google Scholar

    [14]

    Zhang Z, Zhu T, Jin S, Zhang P, Kuang P, Guo L P, An X, Wang B Y, Yu R, Zhang S, Cao X Z 2020 Fusion Eng. Des. 161 111978Google Scholar

    [15]

    Zhu T, Jin S, Gong Y, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar

    [16]

    Sabelová V, Kršjak V, Kuriplach J, Petriska M, Slugeň V, Šimeg Veterníková J 2014 J. Nucl. Mater. 450 54Google Scholar

    [17]

    Song Y M, Song L G, Lian X Y, Jin S X, Zhu T, Liu Y L, Zhang P, Wang B Y, Cao X Z 2023 JJAP Conference Proceedings 9 011103Google Scholar

    [18]

    Jin S X, Zhang P, Lu E Y, Guo L P, Wang B Y, Cao X Z 2016 Acta Mater. 103 658Google Scholar

    [19]

    King D A 1975 Surf. Sci. 47 384Google Scholar

    [20]

    Lombardo S J, Bell A T 1988 Surf. Sci. 206 101Google Scholar

    [21]

    Morishita K, Sugano R, Wirth B D, Diaz de la Rubia T 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 202 76Google Scholar

    [22]

    Zhang S, Cizek J, Yao Z, Oleksandr M, Kong X, Liu C, van Dijk N, van der Zwaag S 2020 J. Alloys Compd. 817 152765Google Scholar

    [23]

    Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243Google Scholar

    [24]

    Xu D, Bus T, Glade S C, Wirth B D 2007 J. Nucl. Mater. 367 483Google Scholar

    [25]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar

    [26]

    Yonemura M, Inoue K 2016 Metall. Mater. Trans. A 47 6384Google Scholar

    [27]

    Wang J R, Pan B C 2022 J. Nucl. Mater. 561 153540Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [3] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟.  , 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [4] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化.  , 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [5] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用.  , 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [7] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [8] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理.  , 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [9] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究.  , 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [10] 张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角. 氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究.  , 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [11] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响.  , 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [12] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究.  , 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [13] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷.  , 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [14] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响.  , 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [15] 王海云, 翁惠民, Ling C. C.. GaN/SiC异质结的慢正电子研究.  , 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [16] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究.  , 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [17] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究.  , 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [18] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究.  , 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [19] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响.  , 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [20] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究.  , 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
计量
  • 文章访问数:  3342
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-07-05
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回
Baidu
map