搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器

张伊祎 韦雪玲 农洁 马汉斯 叶子阳 徐文杰 张振荣 杨俊波

引用本文:
Citation:

基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器

张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波

Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm

Zhang Yi-Yi, Wei Xue-Ling, Nong Jie, Ma Han-Si, Ye Zi-Yang, Xu Wen-Jie, Zhang Zhen-Rong, Yang Jun-Bo
PDF
HTML
导出引用
  • 多模干涉耦合器结构的功率分束器拥有大带宽、较好制造鲁棒性等优势, 长期以来受到人们的关注. 本文提出的是一种基于相变材料In2Se3的超紧凑可调控功率分束器, 尺寸仅有2.4 μm×3.6 μm, 采用1×2的多模干涉耦合器结构, 在不改变其他结构参数的情况下, 采用直接二进制搜索算法对器件进行优化, 仅通过In2Se3α态与β态的可逆相变, 利用两种晶态之间的高折射率对比度实现了不同的功率分束比. 与其他可调控的功率分束器相比, 本文设计的这种功率分束器结构紧凑、调控简单, 并且具有较好的鲁棒性. 利用该器件在1540—1560 nm的波长范围内实现了1∶1, 1∶1.5, 1∶2三种分束比, 插入损耗分别小于0.27, 0.13和0.17 dB. 证明了这种基于相变材料In2Se3的超紧凑可调控功率分束器在光子集成电路上应用的可能性.
    Power splitter with multi-mode interference coupler structure has many advantages, such as large bandwidth and better manufacturing robustness, and has received much attention for a long time. Conventional power beam splitters usually use algorithms or numerical simulation to achieve a single beam splitting ratio; if the circuit has the requirement for power, the structural parameters of the device need changing and recalculating. In order to improve the utilization rate of power splitter in photonic integrated circuit and meet various demands for different optical paths, an ultra-compact tunable power splitter based on phase change material In2Se3 with a 1×2 multimode interference coupler structure is proposed in this paper. The device consists of an input waveguide, a coupling region, and two output waveguides with a coupling region of only 2.4 μm× 3.6 μm in size, which contains several circular holes of the same size and is filled with SiO2. The number and location of circular holes in the coupling region are optimized by direct binary search algorithm, making the device achieve different power splitting ratios by using only the high refractive index contrast variation between the two crystalline states (α and β) of In2Se3 without changing any other structural parameter. In a wavelength range of 1540–1560 nm, three splitting ratios of 1∶1, 1∶1.5 and 1∶2 are achieved by this device, and the insertion losses of these three beam splitting ratios are less than 0.27, 0.13 and 0.17 dB, respectively. In addition, the robustness and balance of the device are analyzed and discussed, and compared with those of the power splitter of the same size designed by SOI platform and several power beam splitters reported in recent years, demonstrating the compact structure and simple regulation of this power splitter based on the phase change material In2Se3, its good robustness, and its possibility of application on photonic integrated circuits.
      通信作者: 张振荣, zzr76@gxu.edu.cn ; 杨俊波, yangjunbo@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12272407, 62275269, 62275271)、国家重点研发计划(批准号: 2022YFF0706005)和粤桂联合科学重点基金(批准号: 2021GXNSFDA076001)资助的课题.
      Corresponding author: Zhang Zhen-Rong, zzr76@gxu.edu.cn ; Yang Jun-Bo, yangjunbo@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12272407, 62275269, 62275271), the National Key R & D Program of China (Grant No. 2022YFF0706005), and the Guangdong-Guangxi Joint Scientific Key Fund, China (Grant No. 2021GXNSFDA076001).
    [1]

    Zhu J B, Chao Q, Huang H Y, Zhao Y X, Li Y, Tao L, She X J, Liao H, Huang R, Zhu Z J, Liu X, Sheng Z, Gan F W 2021 Appl. Opt. 60 413Google Scholar

    [2]

    Zhang C P, Zhang M, Xie Y W, Shi Y C, Kumar R, Panepucci R R, Dai D X 2020 Photonics Res. 8 1171Google Scholar

    [3]

    Fang Z R, Chen R, Zhang J Y, Xu P P, Majumdar A 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pp1,2

    [4]

    Wang N N, Li T T, Sun B S, Wang Z, Zhou L J, Gu T Y 2021 Opt. Lett. 46 4088Google Scholar

    [5]

    Song C M, Gao Y X, Wang G X, Chen Y M, Xu P P, Gu C J, Shi Y C, Shen X 2022 Opt. Express 30 30430Google Scholar

    [6]

    Tao X, Gu Y 2013 Nano Lett. 13 3501Google Scholar

    [7]

    Xu K, Jiang W, Gao X S, Zhao Z J, Low T, Zhu W J 2020 Nanoscale 12 23488Google Scholar

    [8]

    Lee H, Kang D H, Tran L 2005 Mater. Sci. Eng. , B 119 196Google Scholar

    [9]

    Botcha V D, Hong Y H, Huang Z H, Li Z W, Liu Q, Wu J, Lu Y M, Liu X K 2019 J. Alloys Compd. 773 698Google Scholar

    [10]

    Lee H, Kang D H 2005 Jpn. J. Appl. Phys. 44 4759Google Scholar

    [11]

    Huang Y T, Chen N K, Li Z Z, Wang X P, Sun H B, Zhang S B, Li X B 2022 InfoMat 4 e12341Google Scholar

    [12]

    Li T T, Wang Y, Li W, Mao D, Benmore C J, Evangelista I, Xing H D, Li Q, Wang F F, Sivaraman G, Janotti A, Law S, Gu T Y 2022 Adv. Mater. 34 e2108261Google Scholar

    [13]

    Taghinejad H, Abdollahramezani S, Eftekhar A A, Fan T R, Hosseinnia A H, Hemmatyar O, Dorche A E, Gallmon A, Adibi A 2021 Opt. Express 29 20449Google Scholar

    [14]

    Zheng J J, Khanolkar A, Xu P P, Colburn S, Deshmukh S, Myers J, Frantz J, Pop E, Hendrickson J, Doylend J, Boechler N, Majumdar A 2018 Opt. Mater. Express 8 1551Google Scholar

    [15]

    Yuan H, Wu J G, Zhang J P, Pu X, Zhang Z F, Yu Y, Yang J B 2022 Nanomaterials 12 669Google Scholar

    [16]

    Ríos C, Zhang Y F, Shalaginov M Y, Deckoff-Jones S, Wang H Z, An S S, Zhang H L, Kang M, Richardson K A, Roberts C, Chou J B, Liberman V, Vitale S A, Kong J, Gu T, Hu J J 2021 Adv. Photonics Res. 2 2000034Google Scholar

    [17]

    Liu T Y, Xu Y, Liu S Y, Sun X Q, Zhang D M 2022 Opt. Mater. Express 12 2584Google Scholar

    [18]

    Su Y X, Liu D M, Zhang M M 2022 Opt. Express 30 40379Google Scholar

    [19]

    Wei J, Rajesh M, Berardi S R 2021 Opt. Mater. Express 11 3007Google Scholar

    [20]

    Li T T, Wang Y, Xing H D, Li Q, Wang F F, Soman A, Law S, Gu T Y 2021 Conference on Lasers and Electro-optics Electr Network, May 9–14, 2021 pSM4B.5

    [21]

    Behera B, Sutar B C, Pradhan N R 2021 Emergent Mater. 4 847Google Scholar

    [22]

    Li J Y, Li H D, Niu X B, Wang Z M 2021 ACS Nano 15 18683Google Scholar

    [23]

    Forouzmand A, Mosallaei H 2018 Opt. Express 26 17948Google Scholar

    [24]

    Xu K, Liu L, Wen X, Sun W Z, Zhang N, Yi N B, Sun S, Xiao S M, Song Q H 2017 Opt. Lett. 42 855Google Scholar

  • 图 1  器件整体结构 (a) 优化后得到的结果和器件的参数, 其中Out1与Out2为器件的两个输出端口; (b) 初始化时划分好的像素点网格和圆孔的初始位置

    Fig. 1.  Overall device structure: (a) Optimized results and device parameters, where Out1 and Out2 are the two output ports of the device; (b) the initial position of the divided pixel grid and the air hole during initialization.

    图 2  DBS流程图

    Fig. 2.  DBS Flowchart.

    图 3  通过模拟仿真得到的3种分束比下的结果 (a) In2Se3α态时实现的1∶1分束比; (b) 1∶1分束比下两个端口的透过率; (c) In2Se3在中间混合态时实现的1∶1.5分束比; (d) 1∶1.5分束比下两个端口的透过率; (e) In2Se3在β态时实现的1∶2分束比; (f) 1∶2分束比下两个端口的透过率

    Fig. 3.  Results obtained by simulation for three beam splitting ratios: (a) 1:1 beam splitting ratio achieved for In2Se3 in the α state; (b) transmittance of two ports at 1∶1 beam splitting ratio; (c) 1∶1.5 beam splitting ratio achieved by In2Se3 in the intermediate mixed state; (d) transmittance of both ports at 1∶1.5 beam splitting ratio. (e) 1∶2 beam splitting ratio achieved by In2Se3 in the beta state; (f) transmittance of two ports at 1∶2 beam splitting ratio.

    图 4  根据(3)式和(4)式得到的IL与端口平衡误差 (a) 由(3)式计算得到的In2Se3在3种状态下的IL; (b) 由(4)式计算得到的In2Se3在3种状态下的端口平衡误差

    Fig. 4.  IL and port balance error obtained from Eq. (3) and Eq. (4): (a) IL of In2Se3 in three states calculated from Eq. (3); (b) port balance error of In2Se3 in three states calculated from Eq. (4).

    图 5  (a) In2Se3α态与β态在混合态中占比对折射率的影响; (b) In2Se3在相变过程中实现的分束比变化

    Fig. 5.  (a) Influence of the proportion of α and β states of In2Se3 in the mixed state on the refractive index; (b) variation of the upper and lower port splitting ratio in In2Se3 phase transition.

    图 6  SOI平台与In2Se3设计的功率分束器在实现相同分束比时的打孔情况 (a) SOI平台实现1∶1, 1∶1.5, 1∶2分束比的功率分束器; (b) In2Se3材料实现 1∶1, 1∶1.5, 1∶2分束比的功率分束器; (c) SOI平台与In2Se3实现各个分束比时的IL对比

    Fig. 6.  Perforation of SOI platform and In2Se3 designed power beam splitters in achieving the same beam splitting ratio: (a) SOI platform realizing power beam splitters with 1∶1, 1∶1.5, and 1∶2 beam splitting ratios; (b) In2Se3 material realizing power beam splitters with 1∶1, 1∶1.5, and 1∶2 beam splitting ratios; (c) IL comparison between SOI platform and In2Se3 when realizing each beam splitting ratio.

    图 7  圆孔直径对器件的影响 (a) In2Se3α态时圆孔直径误差在5 nm范围内的IL; (b) In2Se3在中间混合态时圆孔直径误差在5 nm范围内的IL; (c) In2Se3β态时圆孔直径误差在5 nm范围内的IL; (d) In2Se3α态时圆孔直径误差在5 nm范围内的平衡误差; (e) In2Se3在中间混合态时圆孔直径误差在5 nm范围内的平衡误差; (f) In2Se3β态时圆孔直径误差在5 nm范围内的平衡误差

    Fig. 7.  Effect of air circular hole diameter on the device: (a) IL of In2Se3 in α state with circular hole diameter error in the range of 5 nm; (b) IL of In2Se3 in intermediate mixed state with circular hole diameter error in the range of 5 nm; (c) IL of In2Se3 in β state with circular hole diameter error in the range of 5 nm; (d) the equilibrium error of In2Se3 in α state with circular hole diameter error in the range of 5 nm; (e) the equilibrium error of In2Se3 in the intermediate mixed state with a circular hole diameter error in the range of 5 nm; (f) the equilibrium error of In2Se3 in the β-state with a circular hole diameter error in the range of 5 nm.

    表 1  几种相变材料的光学性能比较(A, 非晶态; C, 晶态; k, 消光系数)

    Table 1.  Comparison of optical properties of several phase change materials ( A, amorphous; C, crystalline; k, extinction coefficients).

    Phase change
    temperature/°C
    Δn (1550 nm)Reversibilityk (1550 nm)
    Ge2Sb2Te5 (GST)AC, >600[13]
    CA, 200[14]
    2.85[15]yeskA = 0.12,
    kC = 1.49[15]
    Ge2Sb2Se4Te1 (GSST)AC, ~270
    CA, >600[16]
    1.625[17]yeskA ~ 0,
    kC = 0.42[17]
    Sb2Se3AC, ~200
    CA, ~600[18]
    1.22[18]yeskA ~ 0,
    kC ~ 0[19]
    In2Se3αβ, 200
    ββ', 200
    β'α, 60[12]
    ~0.35[12]yeskα = 0,
    kβ = 0[12]
    下载: 导出CSV

    表 2  目前报道的几种功率分束器与本文设计的功率分束器的比较

    Table 2.  Comparison of several power splitters reported at present with the power splitter designed in this paper.

    文献[24](2017)文献[1](2021)文献[15](2022)This work
    Dimension3.6 µm×3.6 µmLtaper = 80 µm2.4 µm×2.4 µm3.6 µm×2.4 µm
    MaterialSiSi3N4GSSTIn2Se3
    TypeMMIadiabatic tapersMMIMMI
    Structure
    Bandwidth/nm1530—15601500—16001530—15601540—1560
    Adjustablenonoyesyes
    Excess loss/dB0.970.02<0.5 (1∶1)
    <0.83 (1.5∶1)
    <1.2 (2∶1)
    <1.18 (2.5∶1)
    <0.27 (1∶1)
    <0.13 (1∶1.5)
    <0.17 (1∶2)
    MethodFSMNumerical simulationsDBSDBS
    下载: 导出CSV
    Baidu
  • [1]

    Zhu J B, Chao Q, Huang H Y, Zhao Y X, Li Y, Tao L, She X J, Liao H, Huang R, Zhu Z J, Liu X, Sheng Z, Gan F W 2021 Appl. Opt. 60 413Google Scholar

    [2]

    Zhang C P, Zhang M, Xie Y W, Shi Y C, Kumar R, Panepucci R R, Dai D X 2020 Photonics Res. 8 1171Google Scholar

    [3]

    Fang Z R, Chen R, Zhang J Y, Xu P P, Majumdar A 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pp1,2

    [4]

    Wang N N, Li T T, Sun B S, Wang Z, Zhou L J, Gu T Y 2021 Opt. Lett. 46 4088Google Scholar

    [5]

    Song C M, Gao Y X, Wang G X, Chen Y M, Xu P P, Gu C J, Shi Y C, Shen X 2022 Opt. Express 30 30430Google Scholar

    [6]

    Tao X, Gu Y 2013 Nano Lett. 13 3501Google Scholar

    [7]

    Xu K, Jiang W, Gao X S, Zhao Z J, Low T, Zhu W J 2020 Nanoscale 12 23488Google Scholar

    [8]

    Lee H, Kang D H, Tran L 2005 Mater. Sci. Eng. , B 119 196Google Scholar

    [9]

    Botcha V D, Hong Y H, Huang Z H, Li Z W, Liu Q, Wu J, Lu Y M, Liu X K 2019 J. Alloys Compd. 773 698Google Scholar

    [10]

    Lee H, Kang D H 2005 Jpn. J. Appl. Phys. 44 4759Google Scholar

    [11]

    Huang Y T, Chen N K, Li Z Z, Wang X P, Sun H B, Zhang S B, Li X B 2022 InfoMat 4 e12341Google Scholar

    [12]

    Li T T, Wang Y, Li W, Mao D, Benmore C J, Evangelista I, Xing H D, Li Q, Wang F F, Sivaraman G, Janotti A, Law S, Gu T Y 2022 Adv. Mater. 34 e2108261Google Scholar

    [13]

    Taghinejad H, Abdollahramezani S, Eftekhar A A, Fan T R, Hosseinnia A H, Hemmatyar O, Dorche A E, Gallmon A, Adibi A 2021 Opt. Express 29 20449Google Scholar

    [14]

    Zheng J J, Khanolkar A, Xu P P, Colburn S, Deshmukh S, Myers J, Frantz J, Pop E, Hendrickson J, Doylend J, Boechler N, Majumdar A 2018 Opt. Mater. Express 8 1551Google Scholar

    [15]

    Yuan H, Wu J G, Zhang J P, Pu X, Zhang Z F, Yu Y, Yang J B 2022 Nanomaterials 12 669Google Scholar

    [16]

    Ríos C, Zhang Y F, Shalaginov M Y, Deckoff-Jones S, Wang H Z, An S S, Zhang H L, Kang M, Richardson K A, Roberts C, Chou J B, Liberman V, Vitale S A, Kong J, Gu T, Hu J J 2021 Adv. Photonics Res. 2 2000034Google Scholar

    [17]

    Liu T Y, Xu Y, Liu S Y, Sun X Q, Zhang D M 2022 Opt. Mater. Express 12 2584Google Scholar

    [18]

    Su Y X, Liu D M, Zhang M M 2022 Opt. Express 30 40379Google Scholar

    [19]

    Wei J, Rajesh M, Berardi S R 2021 Opt. Mater. Express 11 3007Google Scholar

    [20]

    Li T T, Wang Y, Xing H D, Li Q, Wang F F, Soman A, Law S, Gu T Y 2021 Conference on Lasers and Electro-optics Electr Network, May 9–14, 2021 pSM4B.5

    [21]

    Behera B, Sutar B C, Pradhan N R 2021 Emergent Mater. 4 847Google Scholar

    [22]

    Li J Y, Li H D, Niu X B, Wang Z M 2021 ACS Nano 15 18683Google Scholar

    [23]

    Forouzmand A, Mosallaei H 2018 Opt. Express 26 17948Google Scholar

    [24]

    Xu K, Liu L, Wen X, Sun W Z, Zhang N, Yi N B, Sun S, Xiao S M, Song Q H 2017 Opt. Lett. 42 855Google Scholar

  • [1] 杨旭, 李静, 毛宇, 陶可爱, 孙宽, 陈珊珊, 周永利, 郑玉杰. 基于六水氯化钙的单相变材料热二极管的实验研究.  , 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化.  , 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [3] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化.  , 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器.  , 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [6] 杜特, 马汉斯, 姜鑫鹏, 赵芬, 张兆健, 王志成, 彭政, 张伊祎, 张煜青, 罗鸣宇, 邹宏新, 吴加贵, 闫培光, 朱刚毅, 于洋, 何新, 陈欢, 张振福, 杨俊波. 片上光互连器件的智能化设计研究进展.  , 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [7] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器.  , 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [10] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2020, (): . doi: 10.7498/aps.69.20200825
    [11] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器.  , 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [13] 田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华. ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究.  , 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [14] 王霆, 张建军, Huiyun Liu. 硅基III-V族量子点激光器的发展现状和前景.  , 2015, 64(20): 204209. doi: 10.7498/aps.64.204209
    [15] 唐雄贵, 廖进昆, 李和平, 刘永, 刘永智. 基于热膨胀效应的可调光功率分束器设计.  , 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [16] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器.  , 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [17] 陈兆震, 徐则达. 在一种新的聚合物材料上刻写正弦相位波导光栅及其特性研究.  , 2010, 59(5): 3264-3272. doi: 10.7498/aps.59.3264
    [18] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究.  , 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [19] 曾维友, 谢 康, 姜海明, 陈 凯. 基于TE-TM模变换的新型相位自补偿磁光隔离器.  , 2008, 57(6): 3607-3612. doi: 10.7498/aps.57.3607
    [20] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
计量
  • 文章访问数:  3728
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-05-25
  • 上网日期:  2023-05-29
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map