搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制

董肖

引用本文:
Citation:

P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制

董肖

Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism

Dong Xiao
PDF
HTML
导出引用
  • 采用密度泛函理论, 对P掺杂的(LiNH2)n(n = 1—4)团簇与LiH的反应机理进行理论分析, 反应中的驻点进行了构型优化, 通过频率和内禀反应坐标的计算来判断各驻点及其相互连接关系的正确性. 计算了能够反映反应物的稳定性参数. 结果表明: P掺杂后对最低未占据轨道影响较小, 最高占据轨道分布有较大幅度向掺杂原子处的转移, 失电子区域集中在P原子处. 经P原子掺杂, 降低了氨基锂团簇的稳定性, 反应脱氢能垒有所降低. 反应更倾向于由—PH2官能团脱氢和在—NH2官能团处储氢. 在循环储放氢过程中, 实现氢在—NH2和—PH2官能团之间的有效转移, 可进一步改善该材料的储放氢的可逆性.
    Hydrogen energy is considered a clean energy with great development prospects. In the field of hydrogen energy applications, the solid-state chemical hydrogen storage method using hydrogen storage materials as media has received widespread attention due to its safety and high hydrogen storage density. In the research on metal-N-H system hydrogen storage materials, current studies focus on improving the kinetic conditions for hydrogen storage. In this study, the B3LYP hybrid functional method of density functional theory is used to investigate the reaction mechanism between P-doped LiNH2 clusters and LiH at a cluster level, and explore the effects of doping, in addition a new hydrogen storage mechanism called “secondary hydrogen transfer” is proposed. The full-geometry optimization of (LiNH2)n (n = 1–4) clusters and their P-doped clusters at the 6-31G(d,p) basis set level are carried out, and their corresponding most stable configurations are obtained. The distribution and stability of the frontier orbitals of the relevant reactants are calculated. Using the same method and basis set, the theoretical calculation and analysis of the reaction mechanism between P-doped (LiNH2)n (n = 1–4) clusters and LiH are conducted, including the configuration optimization of the stationary points in each reaction path, and the correctness of the connection between the stationary points is determined through frequency and intrinsic reaction coordinate calculations. The results show that P doping has a small effect on the lowest unoccupied molecular orbital, while the highest occupied molecular orbital has a significant transition towards the doping atom, and the electron-deficient region is concentrated at the P atom. P doping reduces the stability of the lithium amide clusters and enhances their ability to participate in chemical reactions and reaction activity, and the reaction dehydrogenation energy barrier decreases. The reaction dehydrogenation energy barrier between P-doped LiNH2 clusters and LiH is significantly lower than that between LiNH2 and LiH, which is consistent with the analysis of reactant stability. Additionally, it is found that the reaction between P-doped LiNH2 clusters and LiH tends to dehydrogenate through the —PH2 functional group and store hydrogen at the —NH2 functional group. Therefore, a new idea of “secondary hydrogen transfer” is proposed, in which effective transfer of hydrogen between —NH2 and —PH2 functional groups takes place during the cyclic hydrogen storage process, thus the reversibility of hydrogen storage is further improved and the hydrogen desorption energy barrier of the material is reduced.
      通信作者: 董肖, dx357@126.com
    • 基金项目: 新疆维吾尔自治区高校科研计划(批准号: XJEDU2022P094, XJEDU2017S050)资助的课题.
      Corresponding author: Dong Xiao, dx357@126.com
    • Funds: Project supported by the Xinjiang Provincial Scientific Research Program of Higher Education of China (Grant Nos. XJEDU2022P094, XJEDU2017S050).
    [1]

    Schlapbach L, Zuttel A 2001 Nature 414 353Google Scholar

    [2]

    马通祥, 高雷章, 胡蒙均, 胡丽文, 温良英, 扈玫珑 2018 功能材料 49 4001Google Scholar

    Ma T X, Gao L Z, Hu M J, Hu L W, Wen L Y, Hu M L 2018 J. Funct. Mater. 49 4001Google Scholar

    [3]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 302Google Scholar

    [4]

    Zhang X, Sun Y, Xia G, Yu X 2022 J. Alloys Compd. 899 163254Google Scholar

    [5]

    Sitthiwet C, Plerdsranoy P, Utke O, Nijpanich S, Chanlek N, Eiamlamai P, Utke R 2022 J. Alloys Compd. 909 164673Google Scholar

    [6]

    Bai Z X, Zeng W, Tang B, Fan D H, Liu Q J, Jiang C L, Chang X H 2022 Int. J. Mod. Phys. B 36 2250074Google Scholar

    [7]

    Chen Y, Sun X, Zhang W K, Gan Y P, Xia Y, Zhang J, Huang H, Liang C, Pan H 2020 ACS Appl. Mater. Interfaces 12 15255Google Scholar

    [8]

    Li C, Li C, Fan M, Chen H, Shu K, Zhang Y, Gao M, Liu Y, Pan H 2019 J. Energy Chem. 35 37Google Scholar

    [9]

    Goshome K, Jain A, Miyaoka H, Yamamoto H, Kojima Y, Ichikawa T 2019 Molecules 24 1348Google Scholar

    [10]

    Shukla V, Bhatnagar A, Singh S, Soni P K, Verma S K, Yadav T P, Shaz M A, Srivastava O N 2019 Dalton Trans. 48 30Google Scholar

    [11]

    马星宇, 王二锐, 邱树君, 褚海亮, 邹勇进, 向翠丽, 闫二虎, 徐芬, 孙立贤 2016 材料导报 30 206Google Scholar

    Ma X Y, Wang E R, Qiu S J, Chu H L, Zou Y J, Xiang C L, Yan E H, Xu F, Sun L J 2016 Mater. Rep. 30 206Google Scholar

    [12]

    Wang J, Liu T, Wu G, Li W, Liu Y, Araujo C M, Scheicher R H, Blomqvist A, Ahuja R, Xiong Z, Yang P, Gao M, Pan H, Chen P 2009 Angew. Chem. Int. Ed. 48 5828Google Scholar

    [13]

    Zhang J, Liu Y, Zhang X, Yang Y, Zhang Q, Jin T, Wang Y, Gao M, Sun L, Pan H 2016 Int. J. Hydrogen Energy 41 11264Google Scholar

    [14]

    Zhang B, Yuan J, Wu Y 2018 Int. J. Hydrogen Energy 44 19294Google Scholar

    [15]

    Qiu S, Gao W, Ma X, Chu H, Zou Y, Xiang C, Zhang H, Xu F, Sun L 2018 Int. J. Hydrogen Energy 43 13975Google Scholar

    [16]

    Zhu X L, Han S M, Zhao X, Li Y, Liu B Z 2014 Rare Met. 33 86Google Scholar

    [17]

    Rohit R, Rajesh K, Vivek S, Ashish B, Srivastava O 2017 Int. J. Hydrogen Energy 42 29350Google Scholar

    [18]

    Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake T, Towata 2004 Appl. Phys. A 79 1765Google Scholar

    [19]

    Zhang Y R, Dong B X, Zhao J, Teng Y L, Li Z W, Wang L 2017 Int. J. Hydrogen Energy 42 17149Google Scholar

    [20]

    邵子霁 2019 博士学位论文 (长春: 吉林大学)

    Shao Z J 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [21]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [22]

    Becke, Axel D 1993 J. Chem. Phys. 98 5648Google Scholar

    [23]

    张陈俊, 王养丽, 陈朝康 2018 67 113101Google Scholar

    Zhang C J, Wang Y L, Chen C K 2018 Acta Phys. Sin. 67 113101Google Scholar

    [24]

    Ivakhnenko E, Malay V, Demidov O, Starikov A, Minkin V 2022 Tetrahedron 103 132575Google Scholar

    [25]

    Fukui K, Yonezawa T, Shingu H 1952 J. Chem. Phys. 20 722Google Scholar

    [26]

    Ichikawa T, Isobe S, Hanada N, Fujii H 2004 J. Alloys Compd. 365 271Google Scholar

    [27]

    Janot R, Eymery J B, Tarascon J M 2007 J. Power Sources 164 496Google Scholar

  • 图 1  反应物构型及前线轨道分布

    Fig. 1.  Reactant configurations and front-line orbital distributions.

    图 2  P-(LiNH2)n(n = 1, 2)与LiH反应势能面上各驻点的几何结构及参数(键长/nm)

    Fig. 2.  Geometries and parameters at the critical points of the potential energy surface of the reaction between P-(LiNH2)n(n = 1, 2) and LiH (bond lengths in nm)

    图 3  P-(LiNH2)3与LiH反应势能面上各驻点的几何结构及参数(键长/nm)

    Fig. 3.  Geometries and parameters at the critical points of the potential energy surface of the reaction between P-(LiNH2)3 and LiH (bond lengths in nm).

    图 4  P-(LiNH2)4与LiH反应势能面上各驻点的几何结构及参数(键长/nm)

    Fig. 4.  Geometries and parameters at the critical points of the potential energy surface of the reaction between P-(LiNH2)4 and LiH (bond lengths in nm).

    图 5  各个反应过程的势能面剖面图

    Fig. 5.  Energetic profiles for potential energy surface of each reaction.

    图 6  循环储放氢机制示意图

    Fig. 6.  Diagram of circulating hydrogen storage and desorption mechanism.

    图 7  氢转移过程的势能面剖面图

    Fig. 7.  Energetic profiles for potential energy surface of hydrogen transfer process.

    表 1  反应物的动力学稳定性参数(单位: eV)

    Table 1.  Kinetic stability parameters of reactants (unit: eV).

    ClusterELOMOEHOMOΔEEIP
    LiNH2–1.143–4.2183.0757.054
    LiPH2–1.633–4.7893.1567.292
    (LiNH2)2–0.490–5.3064.8167.607
    P-(LiNH2)2–0.707–4.8164.1097.253
    (LiNH2)3–0.408–5.7145.3067.678
    P-(LiNH2)3–0.490–5.2254.7357.651
    (LiNH2)4–0.463–5.8235.3607.548
    P-(LiNH2)4–0.490–5.4424.9527.406
    下载: 导出CSV

    表 2  反应各驻点的能量、相对能量及部分振动频率

    Table 2.  Total energies and relative energies at the critical points of potential energy surface and vibrational frequencies.

    SpeciesEtotal/a.u.Erel/a.u.Erel/(kJ·mol–1)Frequency/cm–1
    RC1–358.1578300
    INT1–358.23259–0.07476–196.28177.1277.4
    TS1–358.16547–0.00764–20.06–740.0163.7
    PC1–358.18721–0.02938–77.1422.8110.9
    RC2–421.7328500
    INT2–421.80701–0.07416–194.7191.7111.7
    TS2-1–421.730510.002346.14–924.060.1
    PC2-1–421.74289–0.01004–26.3640.457.5
    TS2-2–421.7447–0.01185–31.11–841.054.0
    PC2-2–421.7681–0.03525–92.5522.034.2
    RC3–485.3046400
    INT3-1–485.35191–0.04727–124.1177.287.3
    TS3-1–485.299770.0048712.79–959.378.8
    PC3-1–485.31087–0.00623–16.3644.258.8
    INT3-2–485.3685–0.06386–167.6638.664.5
    TS3-2–485.31205–0.00741–19.45–935.437.8
    PC3-2–485.33993–0.03529–92.6526.731.0
    RC4–548.8648700
    INT4-1–548.91997–0.0551–144.6741.961.6
    TS4-1–548.861310.003569.35–927.328.9
    PC4-1–548.87191–0.00704–18.4829.645.7
    INT4-2–548.92434–0.05947–156.147.033.8
    TS4-2–548.87084–0.00597–15.67–922.319.8
    PC4-2–548.89928–0.03441–90.3417.730.4
    下载: 导出CSV
    Baidu
  • [1]

    Schlapbach L, Zuttel A 2001 Nature 414 353Google Scholar

    [2]

    马通祥, 高雷章, 胡蒙均, 胡丽文, 温良英, 扈玫珑 2018 功能材料 49 4001Google Scholar

    Ma T X, Gao L Z, Hu M J, Hu L W, Wen L Y, Hu M L 2018 J. Funct. Mater. 49 4001Google Scholar

    [3]

    Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 302Google Scholar

    [4]

    Zhang X, Sun Y, Xia G, Yu X 2022 J. Alloys Compd. 899 163254Google Scholar

    [5]

    Sitthiwet C, Plerdsranoy P, Utke O, Nijpanich S, Chanlek N, Eiamlamai P, Utke R 2022 J. Alloys Compd. 909 164673Google Scholar

    [6]

    Bai Z X, Zeng W, Tang B, Fan D H, Liu Q J, Jiang C L, Chang X H 2022 Int. J. Mod. Phys. B 36 2250074Google Scholar

    [7]

    Chen Y, Sun X, Zhang W K, Gan Y P, Xia Y, Zhang J, Huang H, Liang C, Pan H 2020 ACS Appl. Mater. Interfaces 12 15255Google Scholar

    [8]

    Li C, Li C, Fan M, Chen H, Shu K, Zhang Y, Gao M, Liu Y, Pan H 2019 J. Energy Chem. 35 37Google Scholar

    [9]

    Goshome K, Jain A, Miyaoka H, Yamamoto H, Kojima Y, Ichikawa T 2019 Molecules 24 1348Google Scholar

    [10]

    Shukla V, Bhatnagar A, Singh S, Soni P K, Verma S K, Yadav T P, Shaz M A, Srivastava O N 2019 Dalton Trans. 48 30Google Scholar

    [11]

    马星宇, 王二锐, 邱树君, 褚海亮, 邹勇进, 向翠丽, 闫二虎, 徐芬, 孙立贤 2016 材料导报 30 206Google Scholar

    Ma X Y, Wang E R, Qiu S J, Chu H L, Zou Y J, Xiang C L, Yan E H, Xu F, Sun L J 2016 Mater. Rep. 30 206Google Scholar

    [12]

    Wang J, Liu T, Wu G, Li W, Liu Y, Araujo C M, Scheicher R H, Blomqvist A, Ahuja R, Xiong Z, Yang P, Gao M, Pan H, Chen P 2009 Angew. Chem. Int. Ed. 48 5828Google Scholar

    [13]

    Zhang J, Liu Y, Zhang X, Yang Y, Zhang Q, Jin T, Wang Y, Gao M, Sun L, Pan H 2016 Int. J. Hydrogen Energy 41 11264Google Scholar

    [14]

    Zhang B, Yuan J, Wu Y 2018 Int. J. Hydrogen Energy 44 19294Google Scholar

    [15]

    Qiu S, Gao W, Ma X, Chu H, Zou Y, Xiang C, Zhang H, Xu F, Sun L 2018 Int. J. Hydrogen Energy 43 13975Google Scholar

    [16]

    Zhu X L, Han S M, Zhao X, Li Y, Liu B Z 2014 Rare Met. 33 86Google Scholar

    [17]

    Rohit R, Rajesh K, Vivek S, Ashish B, Srivastava O 2017 Int. J. Hydrogen Energy 42 29350Google Scholar

    [18]

    Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake T, Towata 2004 Appl. Phys. A 79 1765Google Scholar

    [19]

    Zhang Y R, Dong B X, Zhao J, Teng Y L, Li Z W, Wang L 2017 Int. J. Hydrogen Energy 42 17149Google Scholar

    [20]

    邵子霁 2019 博士学位论文 (长春: 吉林大学)

    Shao Z J 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [21]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [22]

    Becke, Axel D 1993 J. Chem. Phys. 98 5648Google Scholar

    [23]

    张陈俊, 王养丽, 陈朝康 2018 67 113101Google Scholar

    Zhang C J, Wang Y L, Chen C K 2018 Acta Phys. Sin. 67 113101Google Scholar

    [24]

    Ivakhnenko E, Malay V, Demidov O, Starikov A, Minkin V 2022 Tetrahedron 103 132575Google Scholar

    [25]

    Fukui K, Yonezawa T, Shingu H 1952 J. Chem. Phys. 20 722Google Scholar

    [26]

    Ichikawa T, Isobe S, Hanada N, Fujii H 2004 J. Alloys Compd. 365 271Google Scholar

    [27]

    Janot R, Eymery J B, Tarascon J M 2007 J. Power Sources 164 496Google Scholar

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究.  , 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [3] 刘秀英, 李晓凤, 于景新, 李晓东. Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究.  , 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [4] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [5] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [6] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [7] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [8] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究.  , 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [9] 路广霞, 张辉, 张国英, 梁婷, 李丹, 朱圣龙. LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究.  , 2011, 60(11): 117101. doi: 10.7498/aps.60.117101
    [10] 张辉, 肖明珠, 张国英, 路广霞, 朱圣龙. 基于密度泛函理论解读不同高密度储氢材料释氢能力.  , 2011, 60(2): 026103. doi: 10.7498/aps.60.026103
    [11] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [12] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响.  , 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [13] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [14] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究.  , 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [15] 牛雪莲, 邓玉福, 李雪. 氟阴离子掺杂对NaMgH3储氢性能影响的第一性原理研究.  , 2009, 58(10): 7317-7321. doi: 10.7498/aps.58.7317
    [16] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计.  , 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  2968
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-11
  • 修回日期:  2023-05-14
  • 上网日期:  2023-05-29
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map