搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热电子发射对钨偏滤器靶板附近磁化鞘层影响的模拟研究

李涵汐 王德真

引用本文:
Citation:

热电子发射对钨偏滤器靶板附近磁化鞘层影响的模拟研究

李涵汐, 王德真

Simulation of effect of thermionic emission on magnetized sheath near target plate of tungsten divertor

Li Han-Xi, Wang De-Zhen
PDF
HTML
导出引用
  • 高约束模式是先进托卡马克装置的首选运行方式, 但边界局域模的爆发会使沉积到偏滤器靶板的热负荷急剧增大, 导致靶板温度迅速上升, 表面热电子发射增强. 本文采用一维流体模型模拟了热电子发射对磁化鞘层特性的影响. 结果表明, 在热电子发射的作用下, 靶板的悬浮电势幅值减小, 电场强度减弱. 大量的热发射电子离开靶板, 使得在靶板附近出现净电荷密度为负的区域, 将磁化鞘层划分为离子鞘和电子鞘两部分. 在电子鞘中, 随着靶板表面温度的升高, 靶板前累积的电子增多, 电势分布呈现非单调性, 出现虚拟阴极结构. 靶板附近形成的反向电场会限制热发射电子离开靶板, 离子运动减速, 导致沉积到靶板的离子能量降低. 随着磁场与靶板法线夹角的增大, 磁化鞘层总电势降变大, 虚拟阴极电势降低, 磁化鞘层中电子鞘的占比增加, 形成虚拟阴极所需的靶板温度升高.
    The high confinement mode (H-mode) is a preferred operation mode of tokamak devices in the future, but the burst of edge localized mode (ELM) will sharply increase the heat load deposited on the divertor target, raising the target temperature rapidly and strengthening surface thermionic emission. In this paper, a one-dimensional fluid model is used to simulate the influence of thermionic emission on the characteristics of the magnetized sheath. The results show that the amplitude of float potential and the electric field strength both decrease under the action of thermionic emission. Plenty of thermionic emission electrons leave the target, resulting in a region with negative charge density near the target plate, and the magnetized sheath is divided into two parts: ion sheath and electron sheath. In the electron sheath, with the rise of the target surface temperature, electrons accumulated in front of the target also increase, the potential distribution is non-monotonic, and a “virtual cathode” structure appears. The reverse electric field formed near the target will confine the thermionic emission electrons leaving the target and slow down the ion movement, leading to a decrease of the ion energy deposited on the target. With the increase of the angle between the magnetic field and the target normal, the potential of the magnetized sheath and the proportion of the thickness of the electron sheath in the magnetized sheath both increase. The virtual cathode potential decreases, the temperature of the target required to form the virtual cathode rises.
      通信作者: 王德真, wangdez@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12235002)资助的课题
      Corresponding author: Wang De-Zhen, wangdez@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12235002)
    [1]

    Burkart W 2005 Nucl. Fusion. 45 E01Google Scholar

    [2]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, MIiller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [3]

    ASDEX team 1989 Nucl. Fusion 29 1959Google Scholar

    [4]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85Google Scholar

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126Google Scholar

    [6]

    Gyergyek T, Kovačič J 2013 Contrib. Plasma Phys. 53 189Google Scholar

    [7]

    Tierno S P, Donoso J M, Domenech-Garret J L, Conde L 2016 Phys. Plasmas 23 013503Google Scholar

    [8]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [9]

    Snipes J A, Hubbard A E, Garnier D T, Golovato S N, Granetz R S, Greenwald M, Hutchinson I H, Irby J, LaBombard B, Marmar E S, Niemczewski A, O’Shea P J, Porkolab M, Stek P, Takase Y, Terry J L, Watterson R, Wolfe S M 1996 Plasma Phys. Control. Fusion 38 1127Google Scholar

    [10]

    Campbell D J, the JET team 1997 Plasma Phys. Control. Fusion 39 A285Google Scholar

    [11]

    Maingi R, Bell M G, Bell R E, Bush C E, Fredrickson E D, Gates D A, Kaye S M, Kugel H W, LeBlanc B P, Menard J E, Mueller D, Sabbagh S A, Stutman D, Taylor G, Johnson D W, Kaita R, Maqueda R J, Ono M, Paoletti F, Paul S F, Peng Y K M, Roquemore A L, Skinner C H, Soukhanovskii V A, Synakowski E J 2002 Phys. Rev. Lett. 88 035003Google Scholar

    [12]

    Burrell K H, Austin M E, Brennan D P, DeBoo J C, Doyle E J, Gohil P, Greenfield C M, Groebner R J, Lao L L, Luce T C, Makowski M A, McKee G R, Moyer R A, Osborne T H, Porkolab M, Rhodes T L, Rost J C, Schaffer M J, Stallard B W, Strait E J, Wade M R, Wang G, Watkins J G, West W P, Zeng L 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [13]

    Duan X R, Dong J Q, Yan L W, Ding X T, Yang Q W, Rao J, Liu D Q, Xuan W M, Chen L Y, Li X D, Lei G J, Cao J Y, Cao Z, Song X M, Huang Y, Liu Y, Mao W C, Wang Q M, Cui Z Y, Ji X Q, Li B, Li G S, Li H J, Luo C W, Wang Y Q, Yao L H, Yao L Y, Zhang J H, Zhou J, Zhou Y, Liu Y, HL-2 A team 2010 Nucl. Fusion 50 095011Google Scholar

    [14]

    Komm M, Ratynskaia S, Tolias P, Cavalier J, Dejarnac R, Gunn J P, Podolnik A 2017 Plasma Phys. Control. Fusion 59 094002Google Scholar

    [15]

    邹秀, 刘惠平, 谷秀娥 2008 57 5111Google Scholar

    Zou X, Liu H P, Gu X E 2008 Acta. Phys. Sin. 57 5111Google Scholar

    [16]

    邹秀, 籍延坤, 邹滨雁 2010 59 1902Google Scholar

    Zou X, Ji Y K, Zou B Y 2010 Acta. Phys. Sin. 59 1902Google Scholar

    [17]

    邱明辉, 刘惠平, 邹秀 2012 61 155204Google Scholar

    Qiu M H, Liu H P, Zou X 2012 Acta. Phys. Sin. 61 155204Google Scholar

    [18]

    Gyergyek T, Kovačič J 2015 Phys. Plasmas 22 093511Google Scholar

    [19]

    Sharma G, Adhikari S, Moulick R, Kausik S S, Saikia B K 2020 Phys. Scr. 95 035605Google Scholar

    [20]

    陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧 2021 70 245201Google Scholar

    Chen L, Sun S J, Jiang B R, Duan P, An Y H, Yang Y H 2021 Acta. Phys. Sin. 70 245201Google Scholar

    [21]

    Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar

    [22]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185Google Scholar

    [23]

    赵晓云, 刘金远, 段萍, 李世刚 2012 真空科学与技术学报 32 279Google Scholar

    Zhao X Y, Liu J Y, Duan P, Li S G 2012 Chin. J. Vacuum Sci. Technol. 32 279Google Scholar

    [24]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [25]

    Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar

    [26]

    Bohdansky J 1983 Nucl. Instruments Methods Phys. Res. 2 587

    [27]

    Hu W P, Sang C F, Sun Z Y, Wang D Z 2016 Fusion Eng. Des. 109 330Google Scholar

  • 图 1  模拟区域示意图

    Fig. 1.  Schematic diagram of the simulation region.

    图 2  离子速度$ V $、离子密度$ {N_{\text{i}}} $及电子密度$ {N_{\text{e}}} $的空间分布

    Fig. 2.  Spatial distribution of ion velocity V, ion density$ {N_{\text{i}}} $ and electron density$ {N_{\text{e}}} $.

    图 3  电势$ \phi $、电场 $ E $的空间分布

    Fig. 3.  Spatial distribution of electric potential $ \phi $ and electric field E.

    图 4  不同靶板温度时靶板处的电势$ {\phi _{{\text{sw}}}} $和热电子发射流Js

    Fig. 4.  Electric potential at the wall $ {\phi _{{\text{sw}}}} $ and thermionic emission flux $ {J_{\text{s}}} $ at different target temperatures.

    图 5  不同靶板温度$ {T_{\text{s}}} $下 (a)电势$ \phi $和(b)电场 ${{E}}$分布

    Fig. 5.  Distribution of (a) electric potential $ \phi $ and (b) electric field $ {{E}} $ in the full region at different target temperatures.

    图 6  不同靶板温度$ {T_{\text{s}}} $下 (a)净电荷密度$ \rho $和(b)热发射电子密度$ {N_{\text{s}}} $分布

    Fig. 6.  Distribution of (a) net charge density $ \rho $ and (b) thermionic emission electron density $ {N_{\text{s}}} $ in the full region at different target temperatures.

    图 7  靶板温度$ {T_{\text{s}}} $ = 2950 K时, 磁化鞘层(a)电势$ \phi $和(b)电场$ E $分布

    Fig. 7.  When target temperature $ {T_{\text{s}}} $ = 2950 K, distribution of (a) electric potential$ \phi $and (b) electric field E in the magnetized sheath .

    图 8  靶板温度$ {T_{\text{s}}} $ = 2950 K时, 磁化鞘层(a)净电荷密度$ \rho $和(b)热发射电子密度$ {N_{\text{s}}} $分布

    Fig. 8.  When target temperature $ {T_{\text{s}}} $ = 2950 K, distribution of (a) net charge density $ \rho $ and (b) thermionic emission electron density $ {N_{\text{s}}} $ in the magnetized sheath.

    图 9  不同磁场角度$ \theta $下, 电子鞘中电势$ \phi $分布

    Fig. 9.  Distribution of electric potential $ \phi $ in electron sheath at different magnetic field angles $ \theta $.

    图 10  磁场角度$ \theta $ = 80°时, 不同靶板温度下磁化鞘层(a)电势$ \phi $和(b)电场$ E $分布

    Fig. 10.  When the magnetic field angle $ \theta $ = 80°, distribution of (a) electric potential $ \phi $ and (b) electric field $ E $ in the magnetized sheath at different target temperatures.

    Baidu
  • [1]

    Burkart W 2005 Nucl. Fusion. 45 E01Google Scholar

    [2]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, MIiller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [3]

    ASDEX team 1989 Nucl. Fusion 29 1959Google Scholar

    [4]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85Google Scholar

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126Google Scholar

    [6]

    Gyergyek T, Kovačič J 2013 Contrib. Plasma Phys. 53 189Google Scholar

    [7]

    Tierno S P, Donoso J M, Domenech-Garret J L, Conde L 2016 Phys. Plasmas 23 013503Google Scholar

    [8]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [9]

    Snipes J A, Hubbard A E, Garnier D T, Golovato S N, Granetz R S, Greenwald M, Hutchinson I H, Irby J, LaBombard B, Marmar E S, Niemczewski A, O’Shea P J, Porkolab M, Stek P, Takase Y, Terry J L, Watterson R, Wolfe S M 1996 Plasma Phys. Control. Fusion 38 1127Google Scholar

    [10]

    Campbell D J, the JET team 1997 Plasma Phys. Control. Fusion 39 A285Google Scholar

    [11]

    Maingi R, Bell M G, Bell R E, Bush C E, Fredrickson E D, Gates D A, Kaye S M, Kugel H W, LeBlanc B P, Menard J E, Mueller D, Sabbagh S A, Stutman D, Taylor G, Johnson D W, Kaita R, Maqueda R J, Ono M, Paoletti F, Paul S F, Peng Y K M, Roquemore A L, Skinner C H, Soukhanovskii V A, Synakowski E J 2002 Phys. Rev. Lett. 88 035003Google Scholar

    [12]

    Burrell K H, Austin M E, Brennan D P, DeBoo J C, Doyle E J, Gohil P, Greenfield C M, Groebner R J, Lao L L, Luce T C, Makowski M A, McKee G R, Moyer R A, Osborne T H, Porkolab M, Rhodes T L, Rost J C, Schaffer M J, Stallard B W, Strait E J, Wade M R, Wang G, Watkins J G, West W P, Zeng L 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [13]

    Duan X R, Dong J Q, Yan L W, Ding X T, Yang Q W, Rao J, Liu D Q, Xuan W M, Chen L Y, Li X D, Lei G J, Cao J Y, Cao Z, Song X M, Huang Y, Liu Y, Mao W C, Wang Q M, Cui Z Y, Ji X Q, Li B, Li G S, Li H J, Luo C W, Wang Y Q, Yao L H, Yao L Y, Zhang J H, Zhou J, Zhou Y, Liu Y, HL-2 A team 2010 Nucl. Fusion 50 095011Google Scholar

    [14]

    Komm M, Ratynskaia S, Tolias P, Cavalier J, Dejarnac R, Gunn J P, Podolnik A 2017 Plasma Phys. Control. Fusion 59 094002Google Scholar

    [15]

    邹秀, 刘惠平, 谷秀娥 2008 57 5111Google Scholar

    Zou X, Liu H P, Gu X E 2008 Acta. Phys. Sin. 57 5111Google Scholar

    [16]

    邹秀, 籍延坤, 邹滨雁 2010 59 1902Google Scholar

    Zou X, Ji Y K, Zou B Y 2010 Acta. Phys. Sin. 59 1902Google Scholar

    [17]

    邱明辉, 刘惠平, 邹秀 2012 61 155204Google Scholar

    Qiu M H, Liu H P, Zou X 2012 Acta. Phys. Sin. 61 155204Google Scholar

    [18]

    Gyergyek T, Kovačič J 2015 Phys. Plasmas 22 093511Google Scholar

    [19]

    Sharma G, Adhikari S, Moulick R, Kausik S S, Saikia B K 2020 Phys. Scr. 95 035605Google Scholar

    [20]

    陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧 2021 70 245201Google Scholar

    Chen L, Sun S J, Jiang B R, Duan P, An Y H, Yang Y H 2021 Acta. Phys. Sin. 70 245201Google Scholar

    [21]

    Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar

    [22]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185Google Scholar

    [23]

    赵晓云, 刘金远, 段萍, 李世刚 2012 真空科学与技术学报 32 279Google Scholar

    Zhao X Y, Liu J Y, Duan P, Li S G 2012 Chin. J. Vacuum Sci. Technol. 32 279Google Scholar

    [24]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [25]

    Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar

    [26]

    Bohdansky J 1983 Nucl. Instruments Methods Phys. Res. 2 587

    [27]

    Hu W P, Sang C F, Sun Z Y, Wang D Z 2016 Fusion Eng. Des. 109 330Google Scholar

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性.  , 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 尚吉花, 杨新宇, 孙大鹏, 张久兴. 钡钨阴极优化与热电子发射性能.  , 2022, 71(4): 047901. doi: 10.7498/aps.71.20211684
    [3] 尚吉花, 杨新宇, 孙大鹏, 张久兴(Jiu-Xing Zhang). 钡钨阴极优化与热电子发射性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211684
    [4] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理.  , 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [5] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性.  , 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [6] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理.  , 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [7] 包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴. 放电等离子烧结原位合成LaxCe1-xB6化合物及性能研究.  , 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [8] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究.  , 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [9] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响.  , 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [10] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构.  , 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [11] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构.  , 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [12] 刘德泳, 王德真, 刘金远. 尘埃粒子在直流辉光放电阴极鞘层中的运动及悬浮.  , 2000, 49(6): 1094-1100. doi: 10.7498/aps.49.1094
    [13] 王德真, 马腾才. 重粒子在阴极鞘层中输运的理论模型.  , 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
    [14] 于 威, 张连珠, 李晓苇, 韩 理, 陈艳梅, 傅广生. 氮气辉光放电阴极鞘层重粒子输运过程研究.  , 1999, 48(9): 1701-1708. doi: 10.7498/aps.48.1701
    [15] 韩俊波, 王德真, 马腾才. 气体放电空心阴极鞘层氩离子的蒙特-卡罗模拟研究.  , 1996, 45(3): 428-435. doi: 10.7498/aps.45.428
    [16] 魏合林, 刘祖黎. 磁场对直流辉光放电阴极鞘层中电子输运过程的影响.  , 1995, 44(2): 225-232. doi: 10.7498/aps.44.225
    [17] 魏合林, 刘祖黎. 直流空心阴极放电中鞘层区电子的输运过程.  , 1994, 43(6): 950-957. doi: 10.7498/aps.43.950
    [18] 张恩虬. 关于热电子发射理论的评述(Ⅲ)——动态表面发射中心.  , 1976, 25(1): 23-30. doi: 10.7498/aps.25.23
    [19] 张恩虬. 关于热电子发射理论的评述(Ⅱ)——单原子层和偶极子理论.  , 1974, 23(5): 53-63. doi: 10.7498/aps.23.53
    [20] 张恩虬. 关于热电子发射理论的评述(Ⅰ)——对氧化物阴极的半导体模型的批判.  , 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
计量
  • 文章访问数:  2949
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-05-15
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map