-
近玻尔速度能区高电荷态离子在稠密等离子体中的能量损失是强流重离子束驱动的高能量密度物理等前沿研究中的核心物理问题之一. 基于中国科学院近代物理研究所的320 kV实验平台, 新建立了一套近玻尔速度能区离子束与激光等离子体相互作用的实验研究装置, 用于开展高精度的离子能量损失和电荷态研究. 本文将详细介绍该装置的特点, 包括脉冲离子束(≥ 200 ns)的产生与调控、高密度(1017—1021 cm–3)激光等离子体靶的制备、等离子体参数诊断与离子的高精度测量(< 1%)等. 基于该装置已开展了百keV的质子束和4 MeV的 Xe15+离子束与激光Al等离子体靶相互作用的实验, 并取得了相应的结果. 本实验装置能够为中国在近玻尔速度能区高电荷离子与稠密激光等离子体相互作用研究提供高精度的实验数据, 以促进理论工作的发展.Ion energy loss in the interaction between highly charged ions and dense plasma near Bohr velocity energy region is one of the important physical problems in the field of high-energy density physics driven by intense heavy ion beams. Based on the 320 kV experimental platform at the Institute of Modern Physics, Chinese Academy of Sciences, a new experimental setup was built for the research of interaction between ions and laser-produced plasma near the Bohr velocity, where the ion energy loss and charge state distribution can be experimentally investigated. In this paper we introduce the new setup in detail, including the generation and controlling of pulsed ion beam ( ≥ 200 ns); the preparation of high-density laser plasma target (1017—1021 cm–3); the diagnostics of plasma and the developed high energy resolution ion measurement system (< 1%). In the experiment, the charge distribution of Xe15+ ions with 4 MeV penetrating through the laser-produced Al plasma target is measured. The charge-state analysis device observes different results without and with the plasma, in which the outgoing Xe ion charge-state changes correspondingly from the 15+ to 10+, thus the electron capture process is believed to be dominant. In addition, the proton energy loss is also measured by using the magnetic spectrometer, showing that the experimental energy loss is about 2.0 keV, 30% higher than those theoretical predictions , which can be attributed to the fact that in the near Bohr velocity energy regime, the first-order Born approximation condition is not valid, thus the Bethe model and SSM model are inapplicable to the experimental results. In future, a systematic study will be performed based on our ions-plasma ineteraction setup, and the energy loss and charge state data will be introduced.
-
Keywords:
- near Bohr velocity energy region /
- highly charged ions /
- laser-produced plasma /
- energy loss /
- energy loss model
[1] Hofmann I 2018 MRE 3 1Google Scholar
[2] Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar
[3] McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Modern Phys. 84 1607Google Scholar
[4] Zhao Y T, Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Sci. Engine. 2 1Google Scholar
[5] 任洁茹, 王佳乐, 陈本正等 2021 强激光与粒子束 33 012005Google Scholar
Ren J R, Wang J L, Chen B Z, et al. 2021 High Power Laser Part. Beams 33 012005Google Scholar
[6] Schoenberg K, Bagnoud V, Blazevic A, et al. 2020 Phys. Plasmas 27 043103Google Scholar
[7] 赵永涛, 肖国青, 李福利 2016 物理 45 98Google Scholar
Zhao Y T, Xiao G Q, Li F L 2016 Physics 45 98Google Scholar
[8] 程锐, 张晟, 申国栋等 2020 中国科学: 物理学 力学 天文学 11 112011Google Scholar
Cheng R, Zhang S, Shen G D, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112011Google Scholar
[9] 赵永涛, 张子民, 程锐等 2020 中国科学: 物理学 力学 天文学 11 112004Google Scholar
Zhao Y T, Zhang Z M, Cheng R, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112004Google Scholar
[10] Ni P, Hoffmann D, Kulish M, Nikolaev D, Tahir N A, Udrea S, Varentsov D, Wahl H 2006 J. Phys. IV France. 133 977Google Scholar
[11] Mintsev V, Kim V, Lomonosov I, Nikolaev D, Ostrik A, Shilkin N, Shutov A, Ternovoi V, Yuriev D, Fortov V, Golubev A, Kantsyrev A, Varentsov D, Hoffmann D 2016 Contrib. Plasma Phys. 56 281Google Scholar
[12] Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 MRE 3 85Google Scholar
[13] Frenje J A, Grabowski P E, Li C K, Seguin F H, Zylstra A B, Gatu Johnson M, Petrasso R D, Yu Glebov V, Sangster T C 2015 Phys. Rev. Lett. 115 205001Google Scholar
[14] Ren J R, Deng Z G, Qi W, et al. 2020 Nat. Commun. 11 5157Google Scholar
[15] Roth M, Stöckl C, Süss W, Iwase O, Gericke D O, Bock R, Hoffmann D, Geissel M, Seelig W 2000 Europhys. Lett. 50 28Google Scholar
[16] Frank A, Blazevic A, Grande P L, et al. 2010 Phys. Rev. E 81 026401Google Scholar
[17] Frank A, Blazevic A, Bagnoud V, Basko M M, Börner M, Cayzac W, Kraus D, Heßling T, Hoffmann D, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz An, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar
[18] Cayzac W, Bagnoud V, Basko M M, Blazevic A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz An, orberger J V, Roth M 2015 Phys. Rev. E 92 053109Google Scholar
[19] Cayzac W, Frank A, Ortner A, et al. 2017 Nat. Commun. 8 15693Google Scholar
[20] Cheng R, Hu Z H, Hui D X, Zhao Y T, Chen Y H, Gao F, Lei Y, Wang Y Y, Zhu B L, Yang Y, Wang Z, Zhou Z X, Wang Y N, Yang J 2021 Phys. Rev. E 103 063216Google Scholar
[21] Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar
[22] Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D 2021 Phys. Rev. Lett. 126 115001Google Scholar
[23] Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Zhou Z X, Yang J, Ma X W 2021 Laser Part. Beams 2021 1
[24] Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 1Google Scholar
[25] Wang Z, Cheng R, Xue F B, et al. 2020 Phys. Scr. 95 105404Google Scholar
[26] Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar
[27] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 72 043401Google Scholar
Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta phys. Sin. 72 043401Google Scholar
[28] Zhou Z X, Guo B, Cheng R, et al. 2022 Nucl. Instrum. Methods Phys. Res. Sect. A 1026 166191Google Scholar
[29] Vernhet D, Adoui L, Rozet J P, Wohrer K, Chetioui A, Cassimi A, Grandin J P, Ramillon J M, Cornille M, Stephan C 1997 Phys. Rev. Lett. 79 3625Google Scholar
[30] Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar
[31] Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar
[32] Schlanges M, Gericke D O 1999 Phys. Rev. E 60 904Google Scholar
[33] Gericke D O, Schlanges M 2003 Phys. Rev. E 67 037401Google Scholar
[34] Zhang S, Chen C, Lan T, et al. 2020 Rev. Sci. Instrum. 91 063501Google Scholar
[35] Lan T, Zhang S, Ding W X, et al. 2021 Rev. Sci. Instrum. 92 093506Google Scholar
[36] 骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar
Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar
[37] 曹世权, 苏茂根, 赵环昱, 张俊杰, 敏琦, 孙对兄, 何思奇, 赵红卫, 董晨钟 2022 中国科学: 物理学 力学 天文学 50 065202
Cao S Q, Su M G, Zhao H Y, Zhang J J, Min Q, Sun D X, He S Q, Zhao H W, Dong C Z 2022 Scientia Sinica Physica, Mechanica & Astronomica 50 065202
[38] Tolstikhina I Y, Shevelko V P 2018 Physics-Uspekhi 61 247Google Scholar
[39] Bethe H 1930 Annalen der Physik (Leipzig) 397 325Google Scholar
[40] Gardes D, Servajean A, Kubica B, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Phys. Rev. A 46 5101Google Scholar
-
图 8 利用在线等离子体诊断装置获取的激光Al等离子体靶相关参数演化信息 (a)等离子体羽的空间分布; (b)光谱法与激光光纤干涉法分别诊断得到的等离子体的平均自由电子密度; (c)光谱法诊断得到的等离子体靶区的平均温度
Fig. 8. Evolution of the laser-produced Al plasma target related parameters obtained by online plasma diagnostic device: (a) Spatial distribution of plasma-plume; (b) plasma diagnosed by optical emission spectroscopy and laser fiber interferometer, respectively; (c) average temperature of plasma target diagnosed by optical emission spectroscopy.
-
[1] Hofmann I 2018 MRE 3 1Google Scholar
[2] Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar
[3] McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Modern Phys. 84 1607Google Scholar
[4] Zhao Y T, Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Sci. Engine. 2 1Google Scholar
[5] 任洁茹, 王佳乐, 陈本正等 2021 强激光与粒子束 33 012005Google Scholar
Ren J R, Wang J L, Chen B Z, et al. 2021 High Power Laser Part. Beams 33 012005Google Scholar
[6] Schoenberg K, Bagnoud V, Blazevic A, et al. 2020 Phys. Plasmas 27 043103Google Scholar
[7] 赵永涛, 肖国青, 李福利 2016 物理 45 98Google Scholar
Zhao Y T, Xiao G Q, Li F L 2016 Physics 45 98Google Scholar
[8] 程锐, 张晟, 申国栋等 2020 中国科学: 物理学 力学 天文学 11 112011Google Scholar
Cheng R, Zhang S, Shen G D, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112011Google Scholar
[9] 赵永涛, 张子民, 程锐等 2020 中国科学: 物理学 力学 天文学 11 112004Google Scholar
Zhao Y T, Zhang Z M, Cheng R, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112004Google Scholar
[10] Ni P, Hoffmann D, Kulish M, Nikolaev D, Tahir N A, Udrea S, Varentsov D, Wahl H 2006 J. Phys. IV France. 133 977Google Scholar
[11] Mintsev V, Kim V, Lomonosov I, Nikolaev D, Ostrik A, Shilkin N, Shutov A, Ternovoi V, Yuriev D, Fortov V, Golubev A, Kantsyrev A, Varentsov D, Hoffmann D 2016 Contrib. Plasma Phys. 56 281Google Scholar
[12] Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 MRE 3 85Google Scholar
[13] Frenje J A, Grabowski P E, Li C K, Seguin F H, Zylstra A B, Gatu Johnson M, Petrasso R D, Yu Glebov V, Sangster T C 2015 Phys. Rev. Lett. 115 205001Google Scholar
[14] Ren J R, Deng Z G, Qi W, et al. 2020 Nat. Commun. 11 5157Google Scholar
[15] Roth M, Stöckl C, Süss W, Iwase O, Gericke D O, Bock R, Hoffmann D, Geissel M, Seelig W 2000 Europhys. Lett. 50 28Google Scholar
[16] Frank A, Blazevic A, Grande P L, et al. 2010 Phys. Rev. E 81 026401Google Scholar
[17] Frank A, Blazevic A, Bagnoud V, Basko M M, Börner M, Cayzac W, Kraus D, Heßling T, Hoffmann D, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz An, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar
[18] Cayzac W, Bagnoud V, Basko M M, Blazevic A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz An, orberger J V, Roth M 2015 Phys. Rev. E 92 053109Google Scholar
[19] Cayzac W, Frank A, Ortner A, et al. 2017 Nat. Commun. 8 15693Google Scholar
[20] Cheng R, Hu Z H, Hui D X, Zhao Y T, Chen Y H, Gao F, Lei Y, Wang Y Y, Zhu B L, Yang Y, Wang Z, Zhou Z X, Wang Y N, Yang J 2021 Phys. Rev. E 103 063216Google Scholar
[21] Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar
[22] Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D 2021 Phys. Rev. Lett. 126 115001Google Scholar
[23] Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Zhou Z X, Yang J, Ma X W 2021 Laser Part. Beams 2021 1
[24] Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 1Google Scholar
[25] Wang Z, Cheng R, Xue F B, et al. 2020 Phys. Scr. 95 105404Google Scholar
[26] Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar
[27] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 72 043401Google Scholar
Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta phys. Sin. 72 043401Google Scholar
[28] Zhou Z X, Guo B, Cheng R, et al. 2022 Nucl. Instrum. Methods Phys. Res. Sect. A 1026 166191Google Scholar
[29] Vernhet D, Adoui L, Rozet J P, Wohrer K, Chetioui A, Cassimi A, Grandin J P, Ramillon J M, Cornille M, Stephan C 1997 Phys. Rev. Lett. 79 3625Google Scholar
[30] Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar
[31] Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar
[32] Schlanges M, Gericke D O 1999 Phys. Rev. E 60 904Google Scholar
[33] Gericke D O, Schlanges M 2003 Phys. Rev. E 67 037401Google Scholar
[34] Zhang S, Chen C, Lan T, et al. 2020 Rev. Sci. Instrum. 91 063501Google Scholar
[35] Lan T, Zhang S, Ding W X, et al. 2021 Rev. Sci. Instrum. 92 093506Google Scholar
[36] 骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar
Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar
[37] 曹世权, 苏茂根, 赵环昱, 张俊杰, 敏琦, 孙对兄, 何思奇, 赵红卫, 董晨钟 2022 中国科学: 物理学 力学 天文学 50 065202
Cao S Q, Su M G, Zhao H Y, Zhang J J, Min Q, Sun D X, He S Q, Zhao H W, Dong C Z 2022 Scientia Sinica Physica, Mechanica & Astronomica 50 065202
[38] Tolstikhina I Y, Shevelko V P 2018 Physics-Uspekhi 61 247Google Scholar
[39] Bethe H 1930 Annalen der Physik (Leipzig) 397 325Google Scholar
[40] Gardes D, Servajean A, Kubica B, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Phys. Rev. A 46 5101Google Scholar
计量
- 文章访问数: 3695
- PDF下载量: 122
- 被引次数: 0