-
BaxSr1–xTiO3 (BST)铁电薄膜因为拥有高介电常数、强电场调谐性和较低的微波频段介电损耗可应用于微波可调谐器件. 然而铁电材料中普遍存在的介电常数-温度依赖性使得常规单组分铁电薄膜的高可调率温区受制于相变温度, 难以满足宽温域适用性的需求. 为研究可用于宽温域功能器件的铁电薄膜, 采用脉冲激光沉积(PLD)技术制备了单组分Ba0.5Sr0.5TiO3薄膜、Ba0.2Sr0.8TiO3薄膜以及Ba0.2Sr0.8TiO3/Ba0.5Sr0.5TiO3异质结构薄膜. 通过对比其介电性能, 发现垂直方向上Ba/Sr组分分布可有效改善BST薄膜的温度依赖性, 然而异质结构的构建可能带来界面问题, 同时也使其品质因子难以提升. 本文提出采用独特的水平方向连续组分薄膜制备技术制备BST组合薄膜, 有望在拓宽BST薄膜相变温区的同时避免界面控制的难题.
-
关键词:
- BaxSr1–xTiO3薄膜 /
- 可调谐微波器件 /
- 连续组分薄膜 /
- 温度依赖性
BaxSr1–xTiO3 (BST) ferroelectric thin films are widely used in microwave tunable devices due to their high dielectric constants, strong electric field tunabilities and low microwave losses. However, because of the temperature dependence of dielectric constant in ferroelectric material, the high-tunability for conventional single component ferroelectric thin film can only be achieved in the vicinity of Curie Temperature (TC) which leads the ferroelectric thin films to be difficult to operate in a wide temperature range. To obtain ferroelectric thin films for temperature stable functional devices, single composition Ba0.2Sr0.8TiO3 thin films, Ba0.5Sr0.5TiO3 thin films, and Ba0.2Sr0.8TiO3/Ba0.5Sr0.5TiO3 heterostructure thin films are deposited by pulsed laser deposition (PLD). By comparing their dielectric properties in a wide temperature range, it is found that the temperature sensitivity of BST film can be effectively reduced by introducing a composition gradient along the epitaxial direction. However, the heterostructure engineering may bring extra troubles caused by interfaces, which may limit the quality factor Q. In this paper, we extend our combinatorial film deposition technique to ferroelectric materials, and we successfully fabricate in-plane composition-spread Ba1–xSrxTiO3 thin films, which are expected to broaden the phase transition temperature ranges of BST films while avoiding the problem of interface control.-
Keywords:
- BaxSr1–xTiO3 films /
- tunable microwave devices /
- composition-spread films /
- temperature stability
[1] Valasek J 1921 Phys. Rev. 17 475Google Scholar
[2] Busch G 1987 Ferroelectrics 74 267Google Scholar
[3] [4] Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: Elsevier) pp1–36
[5] Mikami N 1997 Thin Film Ferroelectric Materials and Devices (Boston, MA: Springer US) pp43–70
[6] Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti Jr G A, Rödel J 2017 Appl. Phys. Rev. 4 041305Google Scholar
[7] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceramics 11 5Google Scholar
[8] Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. and Technol. 11 1323Google Scholar
[9] Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M 1999 J. Supercond. 12 325Google Scholar
[10] Xi X X, Li H, Si W, Sirenko A A, Akimov I A, Fox J R, Clark A M, Hao J 2000 J. Electroceram. 4 393Google Scholar
[11] Baik S, Setter N, Auciello O 2006 J. Appl. Phys. 100 051501Google Scholar
[12] Korn D S, Wu H D 1999 Integr. Ferroelectr. 24 215Google Scholar
[13] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar
[14] Scott J F 2000 Ferroelectric Memories (Berlin, Heidelberg: Springer) pp1–22
[15] Scheele P, Goelden F, Giere A, Mueller S, Jakoby R 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, CA, USA, June 17, 2005 pp603–606
[16] Deleniv A, Abadei S, Gevorgian S 2003 IEEE MTT-S International Microwave Symposium Digest (Vol. 2), Philadelphia, PA, USA, June 8–13, 2003 p1267
[17] Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S 2006 IEEE Microw. Wirel. Compon. Lett. 16 167Google Scholar
[18] Mahmud A, Kalkur T S, Jamil A, Cramer N 2006 IEEE Microw. Wirel. Compon. Lett. 16 261Google Scholar
[19] Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D Appl. Phys. 41 063001Google Scholar
[20] Cole M W, Ngo E, Hirsch S, Demaree J D, Zhong S, Alpay S P 2007 J. Appl. Phys. 102 034104Google Scholar
[21] Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar
[22] Setter N, Cross L E 1980 J. Appl. Phys. 51 4356Google Scholar
[23] Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602Google Scholar
[24] Yao G, Wang X, Wu Y, Li L 2012 J. Am. Ceram. Soc. 95 614Google Scholar
[25] Wang S F, Li J H, Hsu Y F, Wu Y C, Lai Y C, Chen M H 2013 J. Eur. Ceram. Soc. 33 1793Google Scholar
[26] Vendik O G, Zubko S P 2000 J. Appl. Phys. 88 5343Google Scholar
[27] Zhu X H, Meng Q D, Yong L P, He Y S, Cheng B L, Zheng D N 2006 J. Phys. D: Appl. Phys. 39 2282Google Scholar
[28] Kim W J, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 Appl. Phys. Lett. 76 1185Google Scholar
[29] 金魁, 吴颉 2021 70 017403Google Scholar
Jin K, Wu J 2021 Acta Phys. Sin. 70 017403Google Scholar
[30] Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033Google Scholar
[31] Chang W, Kirchoefer S W, Pond J M, Horwitz J S, Sengupta L 2002 J. Appl. Phys. 92 1528Google Scholar
[32] Boikov Y A, Claeson T 2001 Appl. Phys. Lett. 79 2052Google Scholar
[33] Wang H Z, Dong Y X, Zhu R J, Wang Z M, Guo X L, Zhang T, Yuan G L, Kimura H 2019 Ceram. Int. 45 8300Google Scholar
[34] Kim W J, Wu H D, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 J. Appl. Phys. 88 5448Google Scholar
[35] Ding Y P, Wu J S, Meng Z Y, Chan H L, Choy Z L 2002 Mater. Chem. Phys. 75 220Google Scholar
[36] Schimizu T 1997 Solid State Commun. 102 523Google Scholar
[37] Gevorgian S, Petrov P K, Ivanov Z, Wikborg E 2001 Appl. Phys. Lett. 79 1861Google Scholar
[38] Dong H T, Lu G P, Jin D P, Chen J G, Cheng J R 2016 J. Mater. Sci. 51 8414Google Scholar
[39] Zhu R J, Wang Z M, Cheng Z X, Guo X L, Zhang T, Cai Z L, Kimura H, Matsumoto T, Shibata N, Ikuhara Y 2020 Ceram. Int. 46 20284Google Scholar
[40] Cole M W, Ngo E, Hirsch S, Okatan M B, Alpay S P 2008 Appl. Phys. Lett. 92 072906Google Scholar
[41] Marksz E J, Hagerstrom A M, Zhang X, Al Hasan N, Pearson J, Drisko J A, Booth J C, Long C J, Takeuchi I, Orloff N D 2021 Phys. Rev. Appl. 15 064061Google Scholar
-
图 1 Ba0.5Sr0.5TiO3样品的(a)面外X射线θ-2θ扫描, (b) (031)峰倒易空间衍射(RSM), (c) X射线面内φ扫描, (d)室温下电容值与品质因子随外加电场的变化
Fig. 1. (a) Out of plane XRD spectra of θ-2θ scanning for Ba0.5Sr0.5TiO3 film; (b) RSM of (301) diffraction peak for Ba0.5Sr0.5TiO3 film; (c) XRD spectra of φ scanning for Ba0.5Sr0.5TiO3 film; (d) dependence of capacitance and Q with electric field at room temperature.
图 2 不同生长氧压的Ba0.5Sr0.5TiO3薄膜的(a) C0和(b)品质因子随温度变化; 不同生长氧压的Ba0.2Sr0.8TiO3薄膜的(c) C0和(d)品质因子随温度变化
Fig. 2. Temperature dependence of C0 (a) and Q (b) for Ba0.5Sr0.5TiO3 films deposited at different oxygen pressures; the temperature dependence of C0 (c) and Q (d) for Ba0.2Sr0.8TiO3 films deposited at different oxygen pressures.
图 4 (a) Ba0.5Sr0.5TiO3组分样品的面内(a)、面外晶格常数(c)及四方畸变比(a/c)随生长氧压的变化; (b) Ba0.5Sr0.5TiO3组分样品的可调率随四方畸变比a/c的变化
Fig. 4. (a) Relationship between the in-plane lattice constant (a), out-of-plane lattice constant (c), the ratio of in-plane lattice constant/ out-of-plane lattice constant (a/c) of Ba0.5Sr0.5TiO3 films and their growth oxygen pressure; (b) the relationship between the nrMAX and a/c of Ba0.5Sr0.5TiO3 films.
-
[1] Valasek J 1921 Phys. Rev. 17 475Google Scholar
[2] Busch G 1987 Ferroelectrics 74 267Google Scholar
[3] [4] Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: Elsevier) pp1–36
[5] Mikami N 1997 Thin Film Ferroelectric Materials and Devices (Boston, MA: Springer US) pp43–70
[6] Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti Jr G A, Rödel J 2017 Appl. Phys. Rev. 4 041305Google Scholar
[7] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceramics 11 5Google Scholar
[8] Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. and Technol. 11 1323Google Scholar
[9] Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M 1999 J. Supercond. 12 325Google Scholar
[10] Xi X X, Li H, Si W, Sirenko A A, Akimov I A, Fox J R, Clark A M, Hao J 2000 J. Electroceram. 4 393Google Scholar
[11] Baik S, Setter N, Auciello O 2006 J. Appl. Phys. 100 051501Google Scholar
[12] Korn D S, Wu H D 1999 Integr. Ferroelectr. 24 215Google Scholar
[13] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar
[14] Scott J F 2000 Ferroelectric Memories (Berlin, Heidelberg: Springer) pp1–22
[15] Scheele P, Goelden F, Giere A, Mueller S, Jakoby R 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, CA, USA, June 17, 2005 pp603–606
[16] Deleniv A, Abadei S, Gevorgian S 2003 IEEE MTT-S International Microwave Symposium Digest (Vol. 2), Philadelphia, PA, USA, June 8–13, 2003 p1267
[17] Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S 2006 IEEE Microw. Wirel. Compon. Lett. 16 167Google Scholar
[18] Mahmud A, Kalkur T S, Jamil A, Cramer N 2006 IEEE Microw. Wirel. Compon. Lett. 16 261Google Scholar
[19] Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D Appl. Phys. 41 063001Google Scholar
[20] Cole M W, Ngo E, Hirsch S, Demaree J D, Zhong S, Alpay S P 2007 J. Appl. Phys. 102 034104Google Scholar
[21] Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar
[22] Setter N, Cross L E 1980 J. Appl. Phys. 51 4356Google Scholar
[23] Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602Google Scholar
[24] Yao G, Wang X, Wu Y, Li L 2012 J. Am. Ceram. Soc. 95 614Google Scholar
[25] Wang S F, Li J H, Hsu Y F, Wu Y C, Lai Y C, Chen M H 2013 J. Eur. Ceram. Soc. 33 1793Google Scholar
[26] Vendik O G, Zubko S P 2000 J. Appl. Phys. 88 5343Google Scholar
[27] Zhu X H, Meng Q D, Yong L P, He Y S, Cheng B L, Zheng D N 2006 J. Phys. D: Appl. Phys. 39 2282Google Scholar
[28] Kim W J, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 Appl. Phys. Lett. 76 1185Google Scholar
[29] 金魁, 吴颉 2021 70 017403Google Scholar
Jin K, Wu J 2021 Acta Phys. Sin. 70 017403Google Scholar
[30] Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033Google Scholar
[31] Chang W, Kirchoefer S W, Pond J M, Horwitz J S, Sengupta L 2002 J. Appl. Phys. 92 1528Google Scholar
[32] Boikov Y A, Claeson T 2001 Appl. Phys. Lett. 79 2052Google Scholar
[33] Wang H Z, Dong Y X, Zhu R J, Wang Z M, Guo X L, Zhang T, Yuan G L, Kimura H 2019 Ceram. Int. 45 8300Google Scholar
[34] Kim W J, Wu H D, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 J. Appl. Phys. 88 5448Google Scholar
[35] Ding Y P, Wu J S, Meng Z Y, Chan H L, Choy Z L 2002 Mater. Chem. Phys. 75 220Google Scholar
[36] Schimizu T 1997 Solid State Commun. 102 523Google Scholar
[37] Gevorgian S, Petrov P K, Ivanov Z, Wikborg E 2001 Appl. Phys. Lett. 79 1861Google Scholar
[38] Dong H T, Lu G P, Jin D P, Chen J G, Cheng J R 2016 J. Mater. Sci. 51 8414Google Scholar
[39] Zhu R J, Wang Z M, Cheng Z X, Guo X L, Zhang T, Cai Z L, Kimura H, Matsumoto T, Shibata N, Ikuhara Y 2020 Ceram. Int. 46 20284Google Scholar
[40] Cole M W, Ngo E, Hirsch S, Okatan M B, Alpay S P 2008 Appl. Phys. Lett. 92 072906Google Scholar
[41] Marksz E J, Hagerstrom A M, Zhang X, Al Hasan N, Pearson J, Drisko J A, Booth J C, Long C J, Takeuchi I, Orloff N D 2021 Phys. Rev. Appl. 15 064061Google Scholar
计量
- 文章访问数: 3487
- PDF下载量: 143
- 被引次数: 0