-
本文对1342 nm波长的电光腔倒空调Q的Nd:YVO4激光器进行理论与实验研究. 理论计算了电光开关下降沿时间对腔倒空激光器输出脉宽的影响. 在实验中, 采用880 nm准连续激光二极管同带泵浦Nd:YVO4激光器, 在1 kHz重复频率下, 通过电光腔倒空方式, 得到最大平均功率210 mW (单脉冲能量0.21 mJ)、脉冲宽度2.8 ns的1342 nm激光输出, 光束质量因子M 2优于1.2. 通过周期极化铌酸锂晶体(periodically poled lithium niobate, PPLN) 进行腔外倍频, 获得脉冲宽度1.8 ns的671 nm波长可见激光. 这是目前1.3 μm波长主动调Q的Nd固体激光器产生的最窄脉冲宽度.
-
关键词:
- 1342 nm Nd:YVO4激光器 /
- 同带泵浦 /
- 电光腔倒空 /
- 纳秒激光器
1.3-μm Nd laser has significant practical applications in various fields, such as fiber communication, medical treatment, frequency conversion, and scientific research. Many applications of a 1.3-μm laser, particularly frequency conversion, benefit greatly from a short pulse width with high peak power. In the paper, an electro-optical cavity dumping Nd:YVO4 laser at 1342 nm wavelength is studied theoretically and experimentally. The pulse width for an electro-optical cavity dumping laser is determined by the optical length of the cavity. A narrower pulse width is obtained by reducing the length of the cavity and the round trip time of the laser in the cavity. However, when the round trip time in the cavity approaches to the falling edge time of the electro-optical switch, shortening the length of the cavity will not obtain a narrower pulse width, and the falling edge time of the electro-optical switch will influence the laser pulse width. The temporal characteristics of the laser pulse are simulated when the falling edge time of the electro-optical switch is close to the round trip time in the cavity. The influence of the falling edge time of the electro-optical switch on the laser pulse duration is analyzed theoretically. The modified rate equation is used to study the relationship between the falling edge time and the laser pulse width. We demonstrate an electro-optical cavity dumping Nd:YVO4 laser. The atom percent of 0.3% Nd:YVO4 placed in a short Plano-concave cavity is in-band pumped by an 880 nm quasi-continuous-wave diode. A fiber-coupled diode laser module (NA = 0.22) with a power of 30 W is used. An LiNbO3 electro-optical switch is employed for the cavity-dumping. The 1342-nm cavity-dumping laser operates at a repetition rate of 1 kHz, single-pulse energy of 0.21 mJ, and pulse width of 2.8 ns. Near-diffraction-limited beam quality with an $ M^2 $ value of < l.2 is achieved. The setup uses MgO:PPLN crystal to generate efficient second harmonic at 671 nm, with a pulse width of 1.8 ns. To the best of our knowledge, this is the shortest pulse duration ever obtained from 1.3 μm actively Q-switched Nd-doped laser.[1] Xu B, Wang Y, Lin Z, Cui S, Cheng Y, Xu H Y, Cai Z P 2016 App. Opt. 55 42Google Scholar
[2] Wan Q, Du C L, Ruan S C 2007 Opt. Express 15 1594Google Scholar
[3] Dai S B, Zhao H, Tu Z H, Zhu S Q, Yin H, Li Z, Chen Z Q 2020 Opt. Express 28 36046Google Scholar
[4] Zhao H, Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2020 Opt. Lett. 45 6715Google Scholar
[5] Jiang C, Zhong M L, Dai S B, Zhou H Q, Zhu S Q, Yin H, Li Z, Chen Z Q 2022 Opt. Express 30 16396Google Scholar
[6] Sauder D, Minassian A, Damzen M J 2007 Opt. Express 15 3230Google Scholar
[7] Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Ji E C, Chen Z Q 2019 Opt. Express 27 32949Google Scholar
[8] Liu K, Chen Y, Li F Q, Xu H Y, Zong N, Yuan H T, Yuan L, Bo Y, Peng Q J, Cui D F, Xu Z Y 2015 App. Opt. 54 717Google Scholar
[9] Lu C Q, Gong M L, Huang L, He F H 2007 Appl. Phys. B 89 285Google Scholar
[10] Saha A, Ray A, Mukhopadhyay, Datta P K, Dutta P K, Saltiel S M 2007 Appl. Phys. B 87 431Google Scholar
[11] Zhao Y G, Wang Z P, Yu H H, Guo L, Chen L J, Zhuang S D, Sun X, Hu D W, Xu X G 2011 Chin. Opt. Lett. 9 081401Google Scholar
[12] Liu S D, Dong L L, Zhang B T, He J L, Wang Z W, Ning J, Wang R H, Liu X M 2014 Chin. Opt. Lett. 12 031402Google Scholar
[13] Botha R C, Koen W, Esser M J D, Bollig C, Combrinck W L, von Bergmann H M, Strauss H J 2015 Opt. Lett. 40 495Google Scholar
[14] Ma Y F, Li X D, Yu X, Yan R P, Fan R W, Peng J B, Xu X R, Bai Y C, Sun R 2014 App. Opt. 53 3081Google Scholar
[15] Kornev A F, Pokrovskiy V P, Gagarskiy S V, Fomicheva Y Y, Gnatyuk P A, A S Kovyarov 2018 Opt. Lett. 43 3457Google Scholar
-
-
[1] Xu B, Wang Y, Lin Z, Cui S, Cheng Y, Xu H Y, Cai Z P 2016 App. Opt. 55 42Google Scholar
[2] Wan Q, Du C L, Ruan S C 2007 Opt. Express 15 1594Google Scholar
[3] Dai S B, Zhao H, Tu Z H, Zhu S Q, Yin H, Li Z, Chen Z Q 2020 Opt. Express 28 36046Google Scholar
[4] Zhao H, Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2020 Opt. Lett. 45 6715Google Scholar
[5] Jiang C, Zhong M L, Dai S B, Zhou H Q, Zhu S Q, Yin H, Li Z, Chen Z Q 2022 Opt. Express 30 16396Google Scholar
[6] Sauder D, Minassian A, Damzen M J 2007 Opt. Express 15 3230Google Scholar
[7] Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Ji E C, Chen Z Q 2019 Opt. Express 27 32949Google Scholar
[8] Liu K, Chen Y, Li F Q, Xu H Y, Zong N, Yuan H T, Yuan L, Bo Y, Peng Q J, Cui D F, Xu Z Y 2015 App. Opt. 54 717Google Scholar
[9] Lu C Q, Gong M L, Huang L, He F H 2007 Appl. Phys. B 89 285Google Scholar
[10] Saha A, Ray A, Mukhopadhyay, Datta P K, Dutta P K, Saltiel S M 2007 Appl. Phys. B 87 431Google Scholar
[11] Zhao Y G, Wang Z P, Yu H H, Guo L, Chen L J, Zhuang S D, Sun X, Hu D W, Xu X G 2011 Chin. Opt. Lett. 9 081401Google Scholar
[12] Liu S D, Dong L L, Zhang B T, He J L, Wang Z W, Ning J, Wang R H, Liu X M 2014 Chin. Opt. Lett. 12 031402Google Scholar
[13] Botha R C, Koen W, Esser M J D, Bollig C, Combrinck W L, von Bergmann H M, Strauss H J 2015 Opt. Lett. 40 495Google Scholar
[14] Ma Y F, Li X D, Yu X, Yan R P, Fan R W, Peng J B, Xu X R, Bai Y C, Sun R 2014 App. Opt. 53 3081Google Scholar
[15] Kornev A F, Pokrovskiy V P, Gagarskiy S V, Fomicheva Y Y, Gnatyuk P A, A S Kovyarov 2018 Opt. Lett. 43 3457Google Scholar
计量
- 文章访问数: 3927
- PDF下载量: 86
- 被引次数: 0