搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟

舒盼盼 赵朋程 王瑞

引用本文:
Citation:

110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟

舒盼盼, 赵朋程, 王瑞

Electromagnetic particle simulation of secondary electron multipactor characteristics in inner surface of 110 GHz microwave output window

Shu Pan-Pan, Zhao Peng-Cheng, Wang Rui
PDF
HTML
导出引用
  • 在输出窗内表面上, 次级电子倍增是限制高功率微波功率容量的主要因素之一, 因而开展相关研究具有重要的意义. 在微波频率为110 GHz下, 本文通过一维空间分布和三维速度分布的电磁粒子模型对次级电子倍增过程及其引起的损失功率进行了数值模拟. 重点研究了介质表面处的微波电场和介质材料种类对损失功率的影响. 模拟结果表明, 在次级电子倍增达到稳态之后, 尽管电子数密度高于临界的截止数密度, 但是微波电场没有发生明显的改变. 这是因为在很高的静电场下, 电子主要聚集在介质表面附近若干微米的区域, 远小于相应的趋肤深度. 倍增稳态时的电子数密度随着微波电场升高而增加, 然而损失功率与表面处的微波功率之比增加得较为缓慢. 在倍增达到稳态之后, 由于蓝宝石表面附近的电子数密度最高, 石英晶体表面附近的次之, 熔融石英表面附近的数密度最低, 所以相应的损失功率依次减小. 为验证模型的准确性, 将倍增阈值的模拟值与实验数据进行了对比, 并讨论了两者之间的差异.
    The secondary electron multipactor on the inner surface of the output window is one of the main factors limiting the power capacity of high power microwave. Therefore, it is of great significance to carry out relevant research. In this work, the process of secondary electron multipactor and the resulting loss of power are numerically simulated by using the electromagnetic particle model with one-dimensional spatial distribution and three-dimensional velocity distribution at the microwave frequency of 110 GHz. The influences of microwave electric field at the surface and dielectric material type on the power loss are studied. The simulation results show that the electron number density is higher than the critical cut-off number density after the secondary electron multipactor has reached the steady state, but the microwave electric field does not show obvious change. This is because the electrons in a very high electrostatic field are mainly concentrated in the domain of several micrometers near the dielectric surface, which is far less than the corresponding skin depth. The electron number density in the multipactor steady state increases with the microwave electric field increasing, but the ratio of the power loss to the microwave power at the surface increases slowly. After the multipactor reaches the steady state, the number density of electrons near the sapphire surface is the highest, followed by the number density near the crystal quartz surface, and the number density near the fused quartz surface is the lowest, so the corresponding power loss decreases successively. In order to verify the accuracy of the model, the simulated value of the multipactor threshold is compared with the experimental data, and the difference between them is discussed.
      通信作者: 赵朋程, pczhao@xidian.edu.cn
    • 基金项目: 2021-JCJQ-LB-006重点实验室基金(批准号: 6142411132116)、陕西省自然科学基础研究计划(批准号: 2023-JC-YB-512, 2023-JC-YB-042)、中央高校基本科研业务费专项资金(批准号: ZYTS23075)和中国博士后科学基金(批准号: 2019M653545)资助的课题
      Corresponding author: Zhao Peng-Cheng, pczhao@xidian.edu.cn
    • Funds: Project supported by the National Key Laboratory Foundation 2021-JCJQ-LB-006, China (Grant No. 6142411132116), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2023-JC-YB-512, 2023-JC-YB-042), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYTS23075), and the China Postdoctoral Science Foundation (Grant No. 2019M653545)
    [1]

    常超 2018 科学通报 63 1391

    Chang C 2018 Chin Sci. Bull. 63 1391

    [2]

    杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 69 164102Google Scholar

    Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar

    [3]

    刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 69 218401Google Scholar

    Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar

    [4]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702Google Scholar

    [5]

    蔡利兵, 王建国 2011 18 025217Google Scholar

    Cai L B, Wang J G 2011 Acta Phys. Sin. 18 025217Google Scholar

    [6]

    Zhao P, Wang R, Guo L 2022 Plasma Sources Sci. Technol. 31 095005Google Scholar

    [7]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193Google Scholar

    [8]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506Google Scholar

    [9]

    蔡利兵, 王建国 2010 59 1143Google Scholar

    Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143Google Scholar

    [10]

    李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲 2015 64 137701Google Scholar

    Li S, Chang C, Wang J G, Liu Y S, Zhu M, Guo L T, Xie J L 2015 Acta Phys. Sin. 64 137701Google Scholar

    [11]

    左春彦, 高飞, 戴忠玲, 王友年 2018 67 225201Google Scholar

    Zuo C Y, Gao F, Dai Z L, Wang Y N 2018 Acta Phys. Sin. 67 225201Google Scholar

    [12]

    Iqbal A, Wong P Y, Wen D Q, Lin S, Verboncoeur J, Zhang P 2020 Phys. Rev. E 102 043201Google Scholar

    [13]

    董烨, 周前红, 董志伟, 杨温渊, 周海京, 孙会芳 2013 强激光与粒子束 25 950Google Scholar

    Dong Y, Zhou Q H, Dong Z W, Yang W Y, Zhou H J, Sun H F 2013 High Power Laser and Particle Beams 25 950Google Scholar

    [14]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 63 067901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901Google Scholar

    [15]

    董烨, 周前红, 杨温渊, 董志伟, 周海京 2014 63 185206Google Scholar

    Dong Y, Zhou Q H, Yang W Y, Dong Z W, Zhou H J 2014 Acta Phys. Sin. 63 185206Google Scholar

    [16]

    Chang C, Liu G Z, Huang H J, Chen C, Fang J 2009 Phys. Plasmas 16 083501Google Scholar

    [17]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305Google Scholar

    [18]

    Chang C, Fang J Y, Zhang Z Q, Chen C, Tang C, Jin Q 2010 Appl. Phys. Lett. 97 141501Google Scholar

    [19]

    Chang C, Liu Y S, Verboncoeur J, Chen C H, Guo L T, Li S, Wu X L 2015 Appl. Phys. Lett. 106 014102Google Scholar

    [20]

    翁明, 谢少毅, 殷明, 曹猛 2020 69 087901Google Scholar

    Weng M, Xie S Y, Yin M, Cao M 2020 Acta Phys. Sin. 69 087901Google Scholar

    [21]

    Schaub S C, Shapiro M A, Temkin R J 2019 Phys. Rev. Lett. 123 175001Google Scholar

    [22]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [23]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time Domain Method (Boston, MA: Artech House Publishers) pp10−150

    [24]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [25]

    Cheng G, Liu L 2010 IEEE Trans. Plasma Sci. 38 3109Google Scholar

  • 图 1  高功率微波作用下介质表面次级电子倍增的示意图

    Fig. 1.  Schematic diagram of secondary electron multipactor on dielectric surface under high power microwave

    图 2  在入射角等于${\pi}/{2}$以及介质材料分别为蓝宝石、熔融石英和石英晶体下, 次级电子产额δ随入射电子能量的变化

    Fig. 2.  Change of secondary electron yield δ with incident electron energy when the incident angle is ${\pi}/{2}$ and the dielectric materials are sapphire, fused quartz and crystal quartz respectively

    图 3  在介质材料为蓝宝石, 介质表面附近的微波电场振幅$E_\mathrm{{sm}}$取为不同值下, (a)平均电子能量$\langle\varepsilon_\mathrm{e}\rangle$和(b)电子数量随时间的变化

    Fig. 3.  Variation of (a) mean electron energy $\langle\varepsilon_\mathrm{e}\rangle$ and (b) number of electrons over time when the dielectric material is sapphire and the amplitude $E_\mathrm{{sm}}$ of microwave electric field near the dielectric surface takes different values

    图 4  在次级电子倍增达到稳态之后, (a)电子数密度$n_\mathrm{e}$和(b)法向静电场$E_{\mathrm{dc}}$z的变化, 其中模拟条件与图3相同

    Fig. 4.  Spatial distributions of (a) electron number density $n_\mathrm{e}$ and (b) the normal electrostatic field $E_{\mathrm{dc}}$ after the secondary electron multipactor reaches the steady state, where the simulation conditions are the same as Fig. 3

    图 5  电子倍增发生之前的微波电场振幅与电子倍增稳态之后的电场振幅之间的比较, 其中介质材料为蓝宝石, 表面处的电场振幅为22 MV/m

    Fig. 5.  Comparison of microwave electric field amplitude without electron multipactor with that after the secondary electron multipactor reaches the steady state. The dielectric material is sapphire, and the electric field amplitude at the surface is 22 MV/m

    图 6  在介质材料为蓝宝石, 介质表面附近的微波电场振幅$E_\mathrm{{sm}}$取为不同值下, (a)反射功率与入射功率之比$P_{\mathrm{r}}/P_{\mathrm{in}}$, (b)吸收功率与入射功率之比$P_{\mathrm{a}}/P_{\mathrm{in}}$和(c)损失功率与入射功率之比$P_{\mathrm{loss}}/P_{\mathrm{in}}$随时间的变化

    Fig. 6.  (a) The ratio $P_{\mathrm{r}}/P_{\mathrm{in}}$ of reflected power to incident power, (b) the ratio $P_{\mathrm{a}}/P_{\mathrm{in}}$ of absorbed power to incident power, and (c) the ratio $P_{\mathrm{loss}}/P_{\mathrm{in}}$ of loss power to incident power as a function of time when the dielectric material is sapphire and the amplitude $E_\mathrm{{sm}}$ of microwave electric field near the dielectric surface takes different values

    图 7  在介质材料为蓝宝石, 介质表面附近的微波电场振幅$E_\mathrm{{sm}}$取为不同值下, 损失功率与介质表面处功率之比的模拟值与实验数据的比较

    Fig. 7.  Comparison between simulated value and experimental data of the ratio of loss power to power near dielectric surface when the dielectric material is sapphire and the amplitude $E_\mathrm{{sm}}$ of microwave electric field near the dielectric surface takes different values

    图 8  在介质材料分别为蓝宝石、熔融石英、石英晶体且介质表面附近的微波电场振幅$E_\mathrm{{sm}}$均取为$26\;{\rm{MV}}\cdot \rm{m}^{-1}$下, 电子数量随时间的变化

    Fig. 8.  Number of electrons as a function of time when the dielectric materials are sapphire, fused quartz, and crystal quartz and the amplitude $E_\mathrm{{sm}}$ of the microwave electric field near the dielectric surface is $26\;{\rm{MV}}\cdot \mathrm{m}^{-1}$

    图 9  在介质材料分别为蓝宝石、熔融石英、石英晶体且介质表面附近的微波电场振幅$E_\mathrm{{sm}}$均取为$26\;{\rm{MV}}\cdot \mathrm{m}^{-1}$下, 电子倍增达到稳态之后的电子数密度随z的变化

    Fig. 9.  Number density of electrons as a function of z after the secondary electron multipactor reaches steady state. The dielectric materials are sapphire, fused quartz, and crystal quartz and the amplitude $E_\mathrm{{sm}}$ of the microwave electric field near the dielectric surface is $26\;{\rm{MV}}\cdot \mathrm{m}^{-1}$

    图 10  在电子倍增达到稳态之后, 损失功率与介质表面处的功率之比$P_{\mathrm{loss}}/P_{\mathrm{s}}$随微波电场振幅$E_\mathrm{{sm}}$的变化, 其中介质材料分别为蓝宝石、熔融石英、石英晶体

    Fig. 10.  Ratio of the loss power to the power at the surface $P_{\mathrm{loss}}/P_{\mathrm{s}}$ as a function of the amplitude of the microwave electric field $E_\mathrm{{sm}}$ after the electron multipactor reaches the steady state. The dielectric materials are sapphire, fused quartz and quartz crystal, respectively

    表 1  介质材料的次级电子发射参数[21]和电磁参数

    Table 1.  Secondary electron emission parameters[21] and electromagnetic parameters of dielectric materials

    材料类型次级电子发射参数 电磁参数
    $\delta_{\mathrm{max0}}$$\varepsilon_{\mathrm{max0}}$/eV $\epsilon_{\mathrm{r}}$$\mu_\mathrm{r}$
    蓝宝石7.8650101.0
    熔融石英2.94203.61.0
    石英晶体3.84004.61.0
    下载: 导出CSV

    表 2  微波频率为110 GHz下次级电子倍增阈值的模拟结果与实验数据[21]的比较

    Table 2.  Comparison between simulation results and experimental data[21] of secondary electron multipactor threshold at microwave frequency of 110 GHz

    材料类型阈值的模拟结果/(MV·m–1)($P_{\mathrm{loss}}/P_{\mathrm{s}}> 0.005$)阈值的实验数据/(MV·m–1)
    蓝宝石1426
    熔融石英2530
    石英晶体1925
    下载: 导出CSV
    Baidu
  • [1]

    常超 2018 科学通报 63 1391

    Chang C 2018 Chin Sci. Bull. 63 1391

    [2]

    杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 69 164102Google Scholar

    Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar

    [3]

    刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 69 218401Google Scholar

    Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar

    [4]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702Google Scholar

    [5]

    蔡利兵, 王建国 2011 18 025217Google Scholar

    Cai L B, Wang J G 2011 Acta Phys. Sin. 18 025217Google Scholar

    [6]

    Zhao P, Wang R, Guo L 2022 Plasma Sources Sci. Technol. 31 095005Google Scholar

    [7]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193Google Scholar

    [8]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506Google Scholar

    [9]

    蔡利兵, 王建国 2010 59 1143Google Scholar

    Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143Google Scholar

    [10]

    李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲 2015 64 137701Google Scholar

    Li S, Chang C, Wang J G, Liu Y S, Zhu M, Guo L T, Xie J L 2015 Acta Phys. Sin. 64 137701Google Scholar

    [11]

    左春彦, 高飞, 戴忠玲, 王友年 2018 67 225201Google Scholar

    Zuo C Y, Gao F, Dai Z L, Wang Y N 2018 Acta Phys. Sin. 67 225201Google Scholar

    [12]

    Iqbal A, Wong P Y, Wen D Q, Lin S, Verboncoeur J, Zhang P 2020 Phys. Rev. E 102 043201Google Scholar

    [13]

    董烨, 周前红, 董志伟, 杨温渊, 周海京, 孙会芳 2013 强激光与粒子束 25 950Google Scholar

    Dong Y, Zhou Q H, Dong Z W, Yang W Y, Zhou H J, Sun H F 2013 High Power Laser and Particle Beams 25 950Google Scholar

    [14]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 63 067901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901Google Scholar

    [15]

    董烨, 周前红, 杨温渊, 董志伟, 周海京 2014 63 185206Google Scholar

    Dong Y, Zhou Q H, Yang W Y, Dong Z W, Zhou H J 2014 Acta Phys. Sin. 63 185206Google Scholar

    [16]

    Chang C, Liu G Z, Huang H J, Chen C, Fang J 2009 Phys. Plasmas 16 083501Google Scholar

    [17]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305Google Scholar

    [18]

    Chang C, Fang J Y, Zhang Z Q, Chen C, Tang C, Jin Q 2010 Appl. Phys. Lett. 97 141501Google Scholar

    [19]

    Chang C, Liu Y S, Verboncoeur J, Chen C H, Guo L T, Li S, Wu X L 2015 Appl. Phys. Lett. 106 014102Google Scholar

    [20]

    翁明, 谢少毅, 殷明, 曹猛 2020 69 087901Google Scholar

    Weng M, Xie S Y, Yin M, Cao M 2020 Acta Phys. Sin. 69 087901Google Scholar

    [21]

    Schaub S C, Shapiro M A, Temkin R J 2019 Phys. Rev. Lett. 123 175001Google Scholar

    [22]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [23]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time Domain Method (Boston, MA: Artech House Publishers) pp10−150

    [24]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [25]

    Cheng G, Liu L 2010 IEEE Trans. Plasma Sci. 38 3109Google Scholar

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡洛碰撞模拟研究.  , 2024, 73(23): 1-10. doi: 10.7498/aps.73.20241177
    [2] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究.  , 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究.  , 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [5] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程.  , 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [6] 唐涛. 高功率微波土壤击穿的数值验证研究.  , 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [7] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 释气对介质沿面闪络击穿影响的粒子模拟.  , 2014, 63(2): 027901. doi: 10.7498/aps.63.027901
    [8] 张雪, 王勇, 范俊杰, 张瑞. 圆窗片表面次级电子倍增效应的数值模拟.  , 2014, 63(22): 227901. doi: 10.7498/aps.63.227901
    [9] 张雪, 范俊杰, 王勇. 刻周期半圆弧槽窗片对次级电子倍增效应的抑制.  , 2014, 63(22): 227902. doi: 10.7498/aps.63.227902
    [10] 张雪, 王勇, 范俊杰, 朱方, 张瑞. 金属壁与介质窗之间次级电子倍增效应的研究.  , 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [11] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应.  , 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [12] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究.  , 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [13] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响.  , 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [14] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究.  , 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [15] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究.  , 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [16] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究.  , 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [17] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究.  , 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [18] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响.  , 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [19] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [20] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究.  , 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
计量
  • 文章访问数:  3101
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-03-12
  • 上网日期:  2023-03-22
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map