搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性

田颖异 王拴虎 罗殿柄 魏向洋 金克新

引用本文:
Citation:

溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性

田颖异, 王拴虎, 罗殿柄, 魏向洋, 金克新

Spin transport properties of BixY3–xFe5O12 thin films prepared by spin coating

Tian Ying-Yi, Wang Shuan-Hu, Luo Dian-Bing, Wei Xiang-Yang, Jin Ke-Xin
PDF
HTML
导出引用
  • 钇铁石榴石(yttrium iron garnet, YIG)的自旋输运特性一直是自旋电子学的研究重点之一. Bi作为YIG最常见的掺杂元素, 其薄膜BixY3–xFe5O12的磁光特性已经被广泛研究. 但Bi3+取代Y3+对YIG自旋输运的影响规律还没有被系统地研究过. 本文利用溶液旋涂法制备了不同掺杂比的BixY3–xFe5O12薄膜, 并研究Bi掺杂对YIG薄膜形貌结构和自旋输运性能的影响. 结果表明Bi掺杂没有改变YIG的晶体结构, 掺杂比上升令薄膜的吸收强度增大, 带隙减小. XPS表明了Bi3+和Bi2+的存在. Bi掺杂在自旋输运上的调控体现在BixY3–xFe5O12薄膜的磁振子扩散长度相比纯YIG薄膜有所减小. 同时研究发现Pt/ BixY3–xFe5O12薄膜中依然可以检测到明显的自旋霍尔磁电阻, 并在x = 0.3时振幅最大.
    Yttrium iron garnet (YIG), as a room temperature ferrimagnetic insulator with low damping and narrow ferromagnetic resonance linewidth, has been the research hotspot in spintronics because of its spin transport properties. Bi is one of the most common doping elements used in YIG, and some researches have proved that it can tune the magnetic properties of YIG. Previous studies of BixY3–xFe5O12 thin films focused on the evolutions of their structures, morphologies, and magnetic characteristics. Yet, the effects of Bi3+ substitution of Y3+ on spin transport in YIG thin films have not been systematically studied. The regulation of YIG spin transport by doping is expected to provide a new idea for the spintronics exploration of Pt/YIG system. In this work, we prepare a series of BixY3–xFe5O12 films with different doping ratios by spin coating. And we investigate the effects of Bi3+ on morphology, structure and spin transport properties of YIG films. The results show that Bi doping does not change the crystal structure of YIG. The absorption of the film increases and the bandgap decreases with the increase of doping ratio. The X-ray photoelectron spectroscopy (XPS) indicates the co-existence of Bi3+ and Bi2+. The regulation of Bi doping on spin transport is reflected in the fact that the magnon diffusion length of BixY3–xFe5O12 films is significantly smaller than that of pure YIG films. Meanwhile, we find that the obvious spin Hall magnetoresistance can still be detected in the Pt/BixY3–xFe5O12 heterostructure, and the amplitude is the largest when x = 0.3.
      通信作者: 王拴虎, shwang2015@nwpu.edu.cn ; 金克新, jinkx@nwpu.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号: 2020JM-088)和陕西省自然科学基金重点研究项目(批准号: 2021JZ-08)资助的课题.
      Corresponding author: Wang Shuan-Hu, shwang2015@nwpu.edu.cn ; Jin Ke-Xin, jinkx@nwpu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-088) and Key Research Project of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JZ-08).
    [1]

    Gomez-Perez J M, Velez S, Hueso L E, Casanova F 2020 Phys. Rev. B 101 184420Google Scholar

    [2]

    Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar

    [3]

    Giles B L, Yang Z H, Jamison J S, Myers R C 2015 Phys. Rev. B 92 224415Google Scholar

    [4]

    Shan J, Cornelissen L J, Vlietstra N, Ben Youssef J, Kuschel T, Duine R A, van Wees B J 2016 Phys. Rev. B 94 174437Google Scholar

    [5]

    宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨 2020 69 208704Google Scholar

    Song B J, Jin Z M, Guo C Y, Ruan S Y, Li J G, Wan C H, Han X F, Ma G H, Yao J Q 2020 Acta Phys. Sin. 69 208704Google Scholar

    [6]

    杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺 2021 70 077501Google Scholar

    Yang M, Bai H, Li G, Zhu Z, Zhu Y, Su J, Cai J 2021 Acta Phys. Sin. 70 077501Google Scholar

    [7]

    Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar

    [8]

    Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, Saitoh E 2013 Phys. Rev. Lett. 110 206601Google Scholar

    [9]

    Meyer S, Chen Y T, Wimmer S, Althammer M, Wimmer T, Schlitz R, Geprags S, Huebl H, Kodderitzsch D, Ebert H, Bauer G E W, Gross R, Goennenwein S T B 2017 Nat. Mater. 16 977Google Scholar

    [10]

    Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen Y T, Jiao H J, Bauer G E W, Goennenwein S T B 2013 Phys. Rev. Lett. 111 176601Google Scholar

    [11]

    Zhou L F, Song H K, Liu K, Luan Z Z, Wang P, Sun L, Jiang S W, Xiang H J, Chen Y B, Du J, Ding H F, Xia K, Xiao J, Wu D 2018 Sci. Adv. 4 eaao3318Google Scholar

    [12]

    Huang M, Xu Z C 2004 Thin Solid Films 450 324Google Scholar

    [13]

    Xu H T, Yang H, Xu W, Yu L X 2008 Curr. Appl. Phys. 8 1Google Scholar

    [14]

    Aparnadevi N, Kumar K S, Manikandan M, Kumar B S, Punitha J S, Venkateswaran C 2020 J. Mater. Sci-Mater. El. 31 2081Google Scholar

    [15]

    Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar

    [16]

    Matsumoto K, Yamaguchi K, Fujii T, Ueno A 1991 J. Appl. Phys. 69 5918Google Scholar

    [17]

    Guillot M, Ostorero J, Armstrong G, Zhang F, Xu Y 2005 J. Appl. Phys. 97 10f106Google Scholar

    [18]

    Rehspringer J L, Bursik J, Niznansky D, Klarikova A 2000 J. Magn. Magn. Mater. 211 291Google Scholar

    [19]

    Raja A, Gazzali P M M, Chandrasekaran G 2021 Phys. B-Condens. Mat. 613 412988Google Scholar

    [20]

    Atuchin V V, Aleksandrovsky A S, Chimitova O D, Gavrilova T A, Krylov A S, Molokeev M S, Oreshonkov A S, Bazarov B G, Bazarova J G 2014 J. Phys. Chem. C 118 15404Google Scholar

    [21]

    Pena-Garcia R, Guerra Y, Buitrago D M, Leal L R F, Santos F E P, Padron-Hernandez E 2018 Ceram. Int. 44 11314Google Scholar

    [22]

    Costantini J M, Miro S, Beuneu F, Toulemonde M 2015 J. Phys-Condens. Mat. 27 496001Google Scholar

    [23]

    Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P, Sombra A S B 2009 J. Phys. Chem. Solids 70 202Google Scholar

    [24]

    Fernandez-Garcia L, Suarez M, Menendez J L 2010 J. Alloy. Compd. 495 196Google Scholar

    [25]

    Jin L C, Jia K C, He Y J, Wang G, Zhong Z Y, Zhang H W 2019 Appl. Surf. Sci. 483 947Google Scholar

    [26]

    Paiva D V M, Silva M A S, Ribeiro T S, Vasconcelos I F, Sombra A S B, Goes J C, Fechine P B A 2015 J. Alloy. Compd. 644 763Google Scholar

    [27]

    Khanra S, Bhaumik A, Kolekar Y D, Kahol P, Ghosh K 2014 J. Magn. Magn. Mater. 369 14Google Scholar

    [28]

    Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R, Jin K X 2018 Phys. Rev. Mater. 2 051401(RGoogle Scholar

    [29]

    Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E 2014 J. Phys-Condens. Mat. 26 343202Google Scholar

    [30]

    Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F, Bischoff F, Fischer S, Duncan D A, Papageorgiou A C, Klappenberger F, Acres R G, Ngo T H, Barth J V 2014 J. Am. Chem. Soc. 136 9346Google Scholar

    [31]

    Abdullah E A, Abdullah A H, Zainal Z, Hussein M Z, Ban T K 2012 J. Environ. Sci. 24 1876Google Scholar

    [32]

    Siao Y J, Qi X D, Lin C R, Huang J C A 2011 J. Appl. Phys. 109 07a508Google Scholar

    [33]

    Scott G B, Lacklison D E, Page J L 1974 Phys. Rev. B 10 971Google Scholar

    [34]

    Sparks M, Loudon R, Kittel C 1961 Phys. Rev. 122 791Google Scholar

    [35]

    Jin H Y, Boona S R, Yang Z H, Myers R C, Heremans J P 2015 Phys. Rev. B 92 054436Google Scholar

    [36]

    Kikkawa T, Uchida K, Daimon S, Qiu Z Y, Shiomi Y, Saitoh E 2015 Phys. Rev. B 92 064413Google Scholar

    [37]

    Rezende S M, Rodriguez-Suarez R L, Cunha R O, Rodrigues A R, Machado F L A, Guerra G A F, Ortiz J C L, Azevedo A 2014 Phys. Rev. B 89 014416Google Scholar

    [38]

    Wang S H, Li G, Wang J Y, Tian Y Y, Zhang H R, Zou L K, Sun J R, Jin K X 2018 Chinese Phys. B 27 117201Google Scholar

    [39]

    Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, Bauer G E W 2013 Phys. Rev. B 87 144411Google Scholar

  • 图 1  旋涂法示意图.

    Fig. 1.  Schematic diagram of spin coating method.

    图 2  x = 0, 0.3, 0.5和1时BixY3–xFe5O12薄膜的(a) AFM图像; (b)薄膜实物图; (c)拉曼光谱; (d)吸收谱(插图为带隙宽度-x关系图); (e) SSE实验装置图; (f)归一化VISHE-H曲线; (g)矫顽场HC-x关系图

    Fig. 2.  (a) AFM images; (b) photograph of films; (c) Raman spectra; (d) absorption spectra (the insert of (d) is the dependence of bandgap on x); (e) schematic diagram of the SSE experimental setup; (f) normalized VISHE-H curves and (g) the dependence of coercive field HC on x of BixY3–xFe5O12 films at x = 0, 0.3, 0.5 and 1.

    图 3  (a) BixY3–xFe5O12薄膜XPS全谱; (b) Bi元素的XPS窄谱(Bi 4f)

    Fig. 3.  (a) Full XPS spectra of BixY3–xFe5O12 thin films; (b) XPS narrow spectrum of Bi element (Bi 4f).

    图 4  (a)实验装置示意图; (b) BixY3–xFe5O12薄膜(x = 0, 0.3, 0.5和1)的VISHE-激光位置的测试数据(点)和拟合数据(曲线), 其中灰色区域表示激光光斑照射在Pt电极上; (c)x和扩散长度的关系

    Fig. 4.  (a) Schematic diagram of experimental device; (b) dependence of VISHE on laser position in BixY3–xFe5O12 films (x = 0, 0.3, 0.5 and 1), where the points are test data and the curves are fitting data. The gray area in (b) indicates that the laser spot irradiates on the Pt electrode; (c) dependence of diffusion length on x.

    图 5  (a)横向SMR测试示意图; (b) x = 0, 0.3, 0.5和1时, Pt/ BixY3–xFe5O12薄膜的RSMR/R0-θ的测试数据(点)和拟合数据(曲线); (c)RSMR/R0-x关系图

    Fig. 5.  (a) Schematic diagram of experimental device of transverse SMR; (b) when x = 0, 0.3, 0.5 and 1, the dependence of RSMR/R0-θ test data (points) and fitting data (curves) in Pt/ BixY3–xFe5O12 films; (c) dependence of RSMR/R0 on x.

    Baidu
  • [1]

    Gomez-Perez J M, Velez S, Hueso L E, Casanova F 2020 Phys. Rev. B 101 184420Google Scholar

    [2]

    Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar

    [3]

    Giles B L, Yang Z H, Jamison J S, Myers R C 2015 Phys. Rev. B 92 224415Google Scholar

    [4]

    Shan J, Cornelissen L J, Vlietstra N, Ben Youssef J, Kuschel T, Duine R A, van Wees B J 2016 Phys. Rev. B 94 174437Google Scholar

    [5]

    宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨 2020 69 208704Google Scholar

    Song B J, Jin Z M, Guo C Y, Ruan S Y, Li J G, Wan C H, Han X F, Ma G H, Yao J Q 2020 Acta Phys. Sin. 69 208704Google Scholar

    [6]

    杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺 2021 70 077501Google Scholar

    Yang M, Bai H, Li G, Zhu Z, Zhu Y, Su J, Cai J 2021 Acta Phys. Sin. 70 077501Google Scholar

    [7]

    Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar

    [8]

    Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, Saitoh E 2013 Phys. Rev. Lett. 110 206601Google Scholar

    [9]

    Meyer S, Chen Y T, Wimmer S, Althammer M, Wimmer T, Schlitz R, Geprags S, Huebl H, Kodderitzsch D, Ebert H, Bauer G E W, Gross R, Goennenwein S T B 2017 Nat. Mater. 16 977Google Scholar

    [10]

    Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen Y T, Jiao H J, Bauer G E W, Goennenwein S T B 2013 Phys. Rev. Lett. 111 176601Google Scholar

    [11]

    Zhou L F, Song H K, Liu K, Luan Z Z, Wang P, Sun L, Jiang S W, Xiang H J, Chen Y B, Du J, Ding H F, Xia K, Xiao J, Wu D 2018 Sci. Adv. 4 eaao3318Google Scholar

    [12]

    Huang M, Xu Z C 2004 Thin Solid Films 450 324Google Scholar

    [13]

    Xu H T, Yang H, Xu W, Yu L X 2008 Curr. Appl. Phys. 8 1Google Scholar

    [14]

    Aparnadevi N, Kumar K S, Manikandan M, Kumar B S, Punitha J S, Venkateswaran C 2020 J. Mater. Sci-Mater. El. 31 2081Google Scholar

    [15]

    Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar

    [16]

    Matsumoto K, Yamaguchi K, Fujii T, Ueno A 1991 J. Appl. Phys. 69 5918Google Scholar

    [17]

    Guillot M, Ostorero J, Armstrong G, Zhang F, Xu Y 2005 J. Appl. Phys. 97 10f106Google Scholar

    [18]

    Rehspringer J L, Bursik J, Niznansky D, Klarikova A 2000 J. Magn. Magn. Mater. 211 291Google Scholar

    [19]

    Raja A, Gazzali P M M, Chandrasekaran G 2021 Phys. B-Condens. Mat. 613 412988Google Scholar

    [20]

    Atuchin V V, Aleksandrovsky A S, Chimitova O D, Gavrilova T A, Krylov A S, Molokeev M S, Oreshonkov A S, Bazarov B G, Bazarova J G 2014 J. Phys. Chem. C 118 15404Google Scholar

    [21]

    Pena-Garcia R, Guerra Y, Buitrago D M, Leal L R F, Santos F E P, Padron-Hernandez E 2018 Ceram. Int. 44 11314Google Scholar

    [22]

    Costantini J M, Miro S, Beuneu F, Toulemonde M 2015 J. Phys-Condens. Mat. 27 496001Google Scholar

    [23]

    Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P, Sombra A S B 2009 J. Phys. Chem. Solids 70 202Google Scholar

    [24]

    Fernandez-Garcia L, Suarez M, Menendez J L 2010 J. Alloy. Compd. 495 196Google Scholar

    [25]

    Jin L C, Jia K C, He Y J, Wang G, Zhong Z Y, Zhang H W 2019 Appl. Surf. Sci. 483 947Google Scholar

    [26]

    Paiva D V M, Silva M A S, Ribeiro T S, Vasconcelos I F, Sombra A S B, Goes J C, Fechine P B A 2015 J. Alloy. Compd. 644 763Google Scholar

    [27]

    Khanra S, Bhaumik A, Kolekar Y D, Kahol P, Ghosh K 2014 J. Magn. Magn. Mater. 369 14Google Scholar

    [28]

    Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R, Jin K X 2018 Phys. Rev. Mater. 2 051401(RGoogle Scholar

    [29]

    Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E 2014 J. Phys-Condens. Mat. 26 343202Google Scholar

    [30]

    Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F, Bischoff F, Fischer S, Duncan D A, Papageorgiou A C, Klappenberger F, Acres R G, Ngo T H, Barth J V 2014 J. Am. Chem. Soc. 136 9346Google Scholar

    [31]

    Abdullah E A, Abdullah A H, Zainal Z, Hussein M Z, Ban T K 2012 J. Environ. Sci. 24 1876Google Scholar

    [32]

    Siao Y J, Qi X D, Lin C R, Huang J C A 2011 J. Appl. Phys. 109 07a508Google Scholar

    [33]

    Scott G B, Lacklison D E, Page J L 1974 Phys. Rev. B 10 971Google Scholar

    [34]

    Sparks M, Loudon R, Kittel C 1961 Phys. Rev. 122 791Google Scholar

    [35]

    Jin H Y, Boona S R, Yang Z H, Myers R C, Heremans J P 2015 Phys. Rev. B 92 054436Google Scholar

    [36]

    Kikkawa T, Uchida K, Daimon S, Qiu Z Y, Shiomi Y, Saitoh E 2015 Phys. Rev. B 92 064413Google Scholar

    [37]

    Rezende S M, Rodriguez-Suarez R L, Cunha R O, Rodrigues A R, Machado F L A, Guerra G A F, Ortiz J C L, Azevedo A 2014 Phys. Rev. B 89 014416Google Scholar

    [38]

    Wang S H, Li G, Wang J Y, Tian Y Y, Zhang H R, Zou L K, Sun J R, Jin K X 2018 Chinese Phys. B 27 117201Google Scholar

    [39]

    Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, Bauer G E W 2013 Phys. Rev. B 87 144411Google Scholar

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运.  , 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究.  , 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [5] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流.  , 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [6] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响.  , 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [7] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控.  , 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [8] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算.  , 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [9] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运.  , 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [11] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运.  , 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [12] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [13] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用.  , 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [14] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究.  , 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [15] 唐贵德, 韩宝善. 石榴石磁泡薄膜各向异性常数Ku和K1的转矩法测量.  , 1990, 39(3): 479-485. doi: 10.7498/aps.39.479
    [16] 刘玉龙, 张鹏翔, 莫育俊, 屠安. 磁性石榴石单晶Bi-YIG的布里渊散射.  , 1987, 36(5): 651-654. doi: 10.7498/aps.36.651
    [17] 何钰泉, 关铁樑. 可见及红外区域内钇铁石榴石的色散行为.  , 1982, 31(1): 138-142. doi: 10.7498/aps.31.138
    [18] 晶体检验组. 掺钕钇铝石榴石单晶的位错研究.  , 1976, 25(4): 284-291. doi: 10.7498/aps.25.284
    [19] 程国良, 叶安民, 李国栋. 钇-钆石榴石型铁氧体系统的磁性和铁磁共振的研究.  , 1966, 22(1): 119-124. doi: 10.7498/aps.22.119
    [20] 李国栋, 谭生树. 钇-镱石榴石型铁氧体系统的铁磁共振的研究.  , 1966, 22(1): 115-118. doi: 10.7498/aps.22.115
计量
  • 文章访问数:  3941
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-10-17
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-05

/

返回文章
返回
Baidu
map