搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱

王晨 夏威 索鹏 王伟 林贤 郭艳峰 马国宏

引用本文:
Citation:

准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱

王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏

Quasi-two-dimensional van der Waals ferromagnetic semiconductor CrGeTe3 studied by THz spectroscopy

Wang Chen, Xia Wei, Suo Peng, Wang Wei, Lin Xian, Guo Yan-Feng, Ma Guo-Hong
PDF
HTML
导出引用
  • 准二维范德瓦耳斯本征铁磁半导体CrGeTe3兼具窄的半导体带隙和铁磁性质, 在自旋电子学和光电子学等领域具有广阔的应用前景, 近年来受到国内外研究人员的广泛关注. 本文利用傅里叶红外光谱得到CrGeTe3间接带隙的大小, 并采用超快太赫兹光谱(太赫兹时域光谱和光泵浦-太赫兹探测光谱)研究了准二维范德瓦耳斯本征铁磁半导体CrGeTe3的相关性质. 结果表明, 准二维CrGeTe3的间接带隙大小为0.38 eV; 在1 THz附近的折射率约为3.2, 吸收系数约为380 cm–1; 780 nm激光泵浦后的光载流子符合双指数弛豫过程, 存在快慢两个寿命, 由电子-空穴对的复合主导, 复光电导率的Drude-Smith模型拟合展示了微观系统的相关参量随时间的演化. 本文主要展示了CrGeTe3在太赫兹波段的光谱及其相关性质, 对光电子学等领域的研究具有借鉴意义.
    The quasi-two-dimensional van der Waals intrinsic ferromagnetic semiconductor CrGeTe3 possesses both a narrow semiconductor band gap and ferromagnetic properties, which makes it have a broad application prospect in the fields of spintronics and optoelectronics. In recent years, CrGeTe3 has received extensive attention from researchers. To the best of our knowledge, so far, these studies have mainly focused on the optical response in near infrared and visible light range, but little has been done in THz frequency range. Therefore, it is upmost importance to obtain the complex dielectric constant as well as the photocarrier dynamics of the CrGeTe3 at the THz frequency. Herewith, we use time-domain THz spectroscopy and time-resolved THz spectroscopy to investigate the fundamental properties of the CrGeTe3 crystal in the THz range, including refractive index and absorption coefficient in THz frequency, as well as the THz photocarrier dynamics under 780-nm optical excitation. The fundamental characterizations are carried out on a 33-μm-thick CrGeTe3 wafer by Fourier infrared spectroscopy, X-ray diffraction and Raman scattering. It is concluded that the CrGeTe3 wafer shows an indirect band gap of 0.38 eV and good crystalline quality. The THz time domain spectroscopy presents that the CrGeTe3 wafer has a refractive index and an absorption coefficient of 3.2 and 380 cm–1, respectively, both of which show almost negligible dispersion in the investigated THz frequency. Under the optical excitation of 780 nm, the subsequent photocarrier relaxation can be well reproduced by a double exponential function: the fast relaxation shows a lifetime of 1–2 ps, depending on pump fluence, which is contributed by electron-phonon coupling; the slow relaxation has a typical lifetime of 7–8 ps, which is due to phonon-assisted electron-phonon recombination. The Pump fluence and delay time dependence of THz photoconductivity dispersion can be well fitted with Drude-Smith model, and the fitted results demonstrate that the plasma frequency increases with pump fluence in a fixed delay time, and then decreases with delay time increasing at a fixed pump fluence. The momentum scattering time shows that it decreases with pump fluence increasing, and increases with delay time increasing. These pump fluence and delay time dependent fitting microscopic parameters show similar tendencies to those of a conventional semiconductor. In a word, the experimental study here demonstrates that the narrow band-gap CrGeTe3 wafer is well transparent and disperionless in a THz frequency range. From the above bandgap photoexcitation it follows that the wafer shows fast response and high modulation depth in THz radiation, providing a useful reference for the application of CrGeTe3 in optoelectronics and related fields.
      通信作者: 马国宏, ghma@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92150101, 61735010)和上海市科学技术委员会科技创新行动计划(批准号: 21JC1402600)资助的课题.
      Corresponding author: Ma Guo-Hong, ghma@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92150101, 61735010) and the Science and Technology Innovation Action Program of the Shanghai Committee of Science and Technology, China (Grant No. 21JC1402600).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Tongay S, Schumann T, Miao X, Appleton B R, Hebard A F 2011 Carbon 49 2033Google Scholar

    [3]

    Tongay S, Schumann T, Hebard A 2009 Appl. Phys. Lett. 95 222103Google Scholar

    [4]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [5]

    Suo P, Yan S, Pu R, Zhang W, Li D, Chen J, Fu J, Lin X, Miao F, Liang S J 2022 Photonics Res. 10 653Google Scholar

    [6]

    Waters D, Nie Y, Lüpke F, Pan Y, Flsch S, Lin Y C, Jariwala B, Zhang K, Wang C, Lü H 2020 ACS Nano 14 7564Google Scholar

    [7]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A 2019 Nature 567 71Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Ma Q S, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J. Phys. Chem. C 125 9296Google Scholar

    [10]

    Chen J, Suo P, Zhang W, Ma H, Fu J, Li D, Lin X, Yan X, Liu W, Jin Z 2022 J. Phys. Chem. C 126 9407Google Scholar

    [11]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y 2017 Nature 546 265Google Scholar

    [12]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H 2017 Nature 546 270Google Scholar

    [13]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J 2018 Nature 563 94Google Scholar

    [14]

    Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W 2020 Phys. Rev. Lett. 125 267205Google Scholar

    [15]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [16]

    Zhang J, Zhao B, Yao Y, Yang Z 2015 Phys. Rev. B 92 165418Google Scholar

    [17]

    Carteaux V, Moussa F, Spiesser M 1995 EPL-Europhys. Lett. 29 251Google Scholar

    [18]

    Tian Y, Gray M J, Ji H, Cava R J, Burch K S 2016 2 D Mater. 3 025035Google Scholar

    [19]

    Ji H, Stokes R A, Alegria L D, Blomberg E C, Tanatar M A, Reijnders A, Schoop L M, Tian L, Prozorov R, Burch K S 2013 J. Appl. Phys. 114 045302Google Scholar

    [20]

    Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127Google Scholar

    [21]

    Zhu F, Zhang L, Wang X, Dos Santos F J, Song J, Mueller T, Schmalzl K, Schmidt W F, Ivanov A, Park J T 2021 Sci. Adv. 7 eabi7532Google Scholar

    [22]

    索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏 2020 69 207302Google Scholar

    Suo P, Xia W, Zhang W J, Zhu X Q, Guo J J, Fu J B, Lin X, Guo Y F, Ma G H 2020 Acta Phys. Sin. 69 207302Google Scholar

    [23]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar

    [24]

    Davis E, Mott N 1970 Philos. Mag. 22 0903Google Scholar

    [25]

    Mott N F, Davis E A 2012 Electronic Processes in non-Crystalline Materials (New York: Oxford University Press) pp608−622

    [26]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562

    [27]

    Hebling J, Hoffmann M C, Hwang H Y, Yeh K L, Nelson K A 2010 Phys. Rev. B 81 035201Google Scholar

    [28]

    Zou Y, Ma Q S, Zhang Z, Pu R, Zhang W, Suo P, Sun K, Cheng J, Li D, Ma H, Lin X, Leng Y, Liu W, Du J, Ma G 2022 J. Phys. Chem. Lett. 13 5123Google Scholar

    [29]

    Xing X, Zhao L, Zhang W, Wang Z, Su H, Chen H, Ma G, Dai J, Zhang W 2020 Nanoscale 12 2498Google Scholar

    [30]

    Li D, Zhang W, Suo P, Chen J, Sun K, Zou Y, Ma H, Lin X, Yan X, Zhang S 2022 J. Phys. Chem. Lett. 13 2757Google Scholar

    [31]

    Suo P, Xia W, Zhang W, Zhu X, Fu J, Lin X, Jin Z, Liu W, Guo Y, Ma G 2020 Laser Photonics Rev. 14 2000025Google Scholar

  • 图 1  时间分辨超快光泵浦-THz探测实验光路示意图

    Fig. 1.  Schematic diagram of the experimental setup for time-resolved ultrafast optical pump-terahertz probe spectroscopy.

    图 2  (a) CGT原子结构的顶视图和侧视图; (b) 利用红外透射光谱计算得到的间接带隙; (c) 参考信号与透过样品后的THz时域信号; (d) 通过THz时域光谱得到的CGT晶体在THz波段的折射率和吸收系数

    Fig. 2.  (a) Top and side views of the atomic structure of CGT; (b) indirect band gap obtained from Fourier infrared spectroscopy; (c) the reference signal without placing sample and the THz-TDs signal through the sample; (d) the calculated refractive index and absorption coefficient of CGT crystal in the investigated THz frequency range.

    图 3  (a) 不同泵浦功率下的瞬态THz透过率((ΔT/T0)%); (b) 泵浦-探测零延迟时间泵浦功率依赖的调制深度, 实线是线性拟合的结果; (c) 快慢过程的振幅占比随泵浦功率的依赖关系; (d) 快慢寿命随泵浦功率的依赖关系

    Fig. 3.  (a) Transient dynamic evolution (ΔT/T0)% under different pump fluence; (b) pump power-dependent modulation depth at zero pump-probe time delay, the solid line is the result of a linear fit; (c) the fitting fast (A1) and slow (A2) amplitudes with respect to pump fluence; (d) the fitting fast (τ1) and slow (τ2) lifetimes with respect to pump fluence.

    图 4  (a) 泵浦-探测延迟时间为2 ps、不同泵浦功率下光电导的色散曲线, 实线是Drude-Smith模型拟合的结果; (b) 75.3 μJ/cm2泵浦功率、不同泵浦-探测延迟时间下THz光电导色散曲线. 利用Drude-Smith模型拟合的在不同泵浦功率下随延迟时间演化的参数 (c) 等离子体频率ωp; (d) 背散射因子c; (e) 载流子动量散射时间τ

    Fig. 4.  (a) Real and imaginary parts of THz photoconductivity dispersion measured at delay time of 2 ps for different pump fluences, the solid lines are the fitting curves with of Drude-Smith model; (b) the real and imaginary parts of THz photoconductivity dispersion under pump fluence of 75.3 μJ/cm2 at various delay times. The fitting parameters obtained with Drude-Smith model with respect to delay time: (c) plasma frequency, ωp; (d) backscattering factor, c; (e) carrier momentum scattering time, τ.

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Tongay S, Schumann T, Miao X, Appleton B R, Hebard A F 2011 Carbon 49 2033Google Scholar

    [3]

    Tongay S, Schumann T, Hebard A 2009 Appl. Phys. Lett. 95 222103Google Scholar

    [4]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [5]

    Suo P, Yan S, Pu R, Zhang W, Li D, Chen J, Fu J, Lin X, Miao F, Liang S J 2022 Photonics Res. 10 653Google Scholar

    [6]

    Waters D, Nie Y, Lüpke F, Pan Y, Flsch S, Lin Y C, Jariwala B, Zhang K, Wang C, Lü H 2020 ACS Nano 14 7564Google Scholar

    [7]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A 2019 Nature 567 71Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Ma Q S, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J. Phys. Chem. C 125 9296Google Scholar

    [10]

    Chen J, Suo P, Zhang W, Ma H, Fu J, Li D, Lin X, Yan X, Liu W, Jin Z 2022 J. Phys. Chem. C 126 9407Google Scholar

    [11]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y 2017 Nature 546 265Google Scholar

    [12]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H 2017 Nature 546 270Google Scholar

    [13]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J 2018 Nature 563 94Google Scholar

    [14]

    Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W 2020 Phys. Rev. Lett. 125 267205Google Scholar

    [15]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [16]

    Zhang J, Zhao B, Yao Y, Yang Z 2015 Phys. Rev. B 92 165418Google Scholar

    [17]

    Carteaux V, Moussa F, Spiesser M 1995 EPL-Europhys. Lett. 29 251Google Scholar

    [18]

    Tian Y, Gray M J, Ji H, Cava R J, Burch K S 2016 2 D Mater. 3 025035Google Scholar

    [19]

    Ji H, Stokes R A, Alegria L D, Blomberg E C, Tanatar M A, Reijnders A, Schoop L M, Tian L, Prozorov R, Burch K S 2013 J. Appl. Phys. 114 045302Google Scholar

    [20]

    Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127Google Scholar

    [21]

    Zhu F, Zhang L, Wang X, Dos Santos F J, Song J, Mueller T, Schmalzl K, Schmidt W F, Ivanov A, Park J T 2021 Sci. Adv. 7 eabi7532Google Scholar

    [22]

    索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏 2020 69 207302Google Scholar

    Suo P, Xia W, Zhang W J, Zhu X Q, Guo J J, Fu J B, Lin X, Guo Y F, Ma G H 2020 Acta Phys. Sin. 69 207302Google Scholar

    [23]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar

    [24]

    Davis E, Mott N 1970 Philos. Mag. 22 0903Google Scholar

    [25]

    Mott N F, Davis E A 2012 Electronic Processes in non-Crystalline Materials (New York: Oxford University Press) pp608−622

    [26]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562

    [27]

    Hebling J, Hoffmann M C, Hwang H Y, Yeh K L, Nelson K A 2010 Phys. Rev. B 81 035201Google Scholar

    [28]

    Zou Y, Ma Q S, Zhang Z, Pu R, Zhang W, Suo P, Sun K, Cheng J, Li D, Ma H, Lin X, Leng Y, Liu W, Du J, Ma G 2022 J. Phys. Chem. Lett. 13 5123Google Scholar

    [29]

    Xing X, Zhao L, Zhang W, Wang Z, Su H, Chen H, Ma G, Dai J, Zhang W 2020 Nanoscale 12 2498Google Scholar

    [30]

    Li D, Zhang W, Suo P, Chen J, Sun K, Zou Y, Ma H, Lin X, Yan X, Zhang S 2022 J. Phys. Chem. Lett. 13 2757Google Scholar

    [31]

    Suo P, Xia W, Zhang W, Zhu X, Fu J, Lin X, Jin Z, Liu W, Guo Y, Ma G 2020 Laser Photonics Rev. 14 2000025Google Scholar

  • [1] 陈涛, 李欣. 太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型.  , 2024, 73(5): 058701. doi: 10.7498/aps.73.20231569
    [2] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性.  , 2024, 73(19): 193201. doi: 10.7498/aps.73.20240944
    [3] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究.  , 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [4] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱.  , 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [5] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究.  , 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [6] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性.  , 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [7] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱.  , 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [8] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究.  , 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [9] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究.  , 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [10] 易涛, 王传珂, 杨进文, 朱效立, 谢常青, 刘慎业. 基于移位双光栅色散元件的X射线谱仪研制.  , 2016, 65(16): 165201. doi: 10.7498/aps.65.165201
    [11] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究.  , 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [12] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析.  , 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [13] 刘院省, 刘世炳, 宋海英, 何润. 脉冲激光-铜靶等离子体产生及其演化过程的瞬态光谱研究.  , 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [14] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究.  , 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子.  , 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [16] 宋迎新, 郑卫民, 刘静, 初宁宁, 李素梅. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响.  , 2009, 58(9): 6471-6476. doi: 10.7498/aps.58.6471
    [17] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究.  , 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [18] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究.  , 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [19] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究.  , 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [20] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究.  , 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
计量
  • 文章访问数:  4617
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 修回日期:  2022-08-23
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map