-
金属卤化物钙钛矿由于其高吸收系数、长距离载流子扩散长度和可调带隙, 近年来在太阳能电池等光电器件中得到了广泛应用, 有望实现商业应用. 甲胺铅碘 (MAPbI3)作为一种标准的钙钛矿化合物组分已得到了充分的研究, 然而, 湿化学法制备的多晶薄膜由于其低形成能通常会产生较多的晶体缺陷 (包含界面和晶界处缺陷), 这是导致相变的一个重要原因, 因此降低材料中的缺陷密度是提高钙钛矿稳定性的一个重要手段. 虽然缺陷钝化是制备高效钙钛矿太阳能电池最常用的方法之一, 但是分子钝化基团与钙钛矿晶体之间相对较弱的二次键可能会给实际设备的应用带来困难, 特别是在高温、潮湿和紫外线(UV)光等恶劣环境下操作时. 另一种策略是通过调控卤化物组成来提高其本征结构稳定性. 本文以氯甲胺(MACl)和碘化铅(PbI2)作为前驱体通过一步旋涂法制备了两相钙钛矿(MAPbI2Cl). 结果表明, 氯离子掺杂替代部分碘离子可以更好地诱导钙钛矿结晶, 进而稳定MAPbI3晶格. 经过Cl掺杂的钙钛矿层表现出更低的缺陷态密度, 对比于原始薄膜, Cl的载流子寿命增加了7倍, 与此同时, 功率转换效率 (PCE)和操作稳定性都得到了很大的改善, PCE从11.41%提高到13.68%. 器件具有良好的操作稳定性, 在最大功率点输出8000 s后并未显示出明显的衰减. 本文为制备高效稳定的钙钛矿太阳能电池提供了全新的思路.Metal halide perovskite (MHP) has been widely used in optoelectronic devices such as solar cells in recent years due to their high absorption coefficients, long-range charge carrier diffusion lengths, and adjustable band gap, which is expected to achieve commercial application. Methylammonium lead iodide (MAPbI3) has been fully investigated as a standard perovskite component, however, due to the low formation energy of polycrystalline films fabricated by wet chemical method, crystal defects (including interface and grain boundary defects) are generally inevitable, which is a principal factor leading to phase transition. Therefore, reducing the defect density of perovskite is a prominent approach to improve the stability of perovskite. Although defect passivation is one of the most commonly used methods to fabricate efficient perovskite solar cells (PSCs), the relatively weak secondary bond between molecular passivation group and perovskite crystal may bring difficulties to the application of practical devices, particularly when operating under harsh environments, such as high temperature, humidity, and ultraviolet light. Therefore, improving the intrinsic structure stability of the perovskite via changing its composition can be an effective way. Although perovskites containing chlorine precursors have been empolyed in solar cells device, how chloride ions affect the structural and electronic properties of these films was not understood yet. In this work, two-phase perovskite (MAPbI2Cl) was fabricated by one-step spin coating with methylamine chloride (MACl) and lead iodide (PbI2) as precursors. As a result, chloride (Cl) doping can superiorly induce perovskite crystallization and thus stabilize the MAPbI3 lattice. The Cl doped perovskite layer shows lower defect density, and compared with the original MAPbI3 film, the carrier lifetime of MAPbI2Cl is increased by 7 times. Simultaneously, both of PCE and operational stability have been largely improved with PCE increased from 11.41% to 13.68%. There is no obvious degradation in the maximum power point output for nearly 8000 seconds in ambient conditions.
-
Keywords:
- perovskite solar cell /
- chlorine doping /
- defect passivation /
- high stability
[1] 张宇辉 2005 北方经济 13 5
Zhang Y H 2005 Northern Eco. 13 5
[2] Huang Q J, Lin J P, Wei C H, Yao R H 2009 Mater. Develop. Appl. 6 93
[3] Shao J Z, Dong W, Deng Z H, Tao R H, Fang X D 2014 Funct. Mater. 45 24008
[4] Yoo J, Shin S, Seo J 2022 ACS Energy Lett. 7 2084Google Scholar
[5] Zhang W H, Peng X C, Feng X D 2014 ECTM 33 7
[6] 郑莹莹 2007 博士学位论文 (杭州: 浙江大学)
Zheng Y Y 2007 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[7] 周军帅 2020 博士学位论文 (北京: 北京化工大学)
Zhou J S 2020 Ph. D. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)
[8] 孙盟杰 2020 博士学位论文 (北京: 北京交通大学)
Sun M J 2020 Ph. D. Dissertation (Beijing: Beijing Jiao tong University) (in Chinese)
[9] 陈聪 2019 博士学位论文 (长春: 吉林大学)
Chen C 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[10] 刘维 2020 硕士学位论文 (南京: 南京邮电大学)
Liu W 2020 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)
[11] 赵电龙, 李天姝, 徐巧玲, 王雪婷, 张立军 2019 中国光学 12 964Google Scholar
Zhao D L, Li T S, Xu Q L, Wang X T, Zhang L J 2019 Chin. Opt. 12 964Google Scholar
[12] Tong G, Lan X, Song Z, Li G, Li H, Yu L, Xu J, Jiang Y, Sheng Y, Shi Y, Chen K 2017 Mater. Today Energy 5 173Google Scholar
[13] Tong G, Son D Y, Ono L K, Liu Y, Hu Y, Zhang H, Jamshaid A, Qiu L, Liu Z, Qi Y B 2020 Adv. Energy Mater. 10 2003712Google Scholar
[14] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Mater. 2 79Google Scholar
[15] Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar
[16] Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar
[17] Pool V L, Gold-Parker A, McGehee M D, Toney M F 2015 Chem. Mater. 27 7240Google Scholar
[18] Xu J, Boyd C, Yu Z J, et al. 2020 Science 367 1097Google Scholar
[19] 王艳香, 罗俊, 郭平春, 赵学国, 杨志胜, 朱华, 孙健 2015 无机材料学报 7 673Google Scholar
Wang Y X, Luo J, Guo P C, Zhao X G, Yang Z S, Zhu H, Sun J 2015 J. Inorg. Mater. 7 673Google Scholar
[20] 刘亚青 2019 博士学位论文 (长春: 吉林大学)
Liu Y Q 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[21] Ng T W, Chan C Y, Lo M F, Guan Z Q Lee C S 2015 J. Mater. Chem. A 3 9081Google Scholar
[22] Liu Z, Ono L K, Qi Y B 2020 J. Energy Chem. 46 215Google Scholar
[23] Wang M, Li B, Siffalovic P, Chen L C, Cao G, Tian J 2018 J. Mater. Chem. A 6 15386Google Scholar
[24] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Sci. 2 79Google Scholar
[25] Jamshaid A, Guo Z, Hieulle J, Stecker C, Ohmann R, Ono L, Qiu L B, Tong G Q, Yin W J, Qi Y B 2021 Energy Environ. Sci. 14 4541
[26] Wang K, Wu C, Hou Y, Yang D, Ye T, Yoon J, Sanghadasa M, Priya S 2020 Energy Environ. Sci. 13 3412Google Scholar
[27] Wu C, Wang K, Li J, Liang Z, Li J, Li W, Zhao L, Chi B, Wang S 2021 Matter 4 775Google Scholar
[28] Park B W, Kedem N, Kulbak M, Lee D Y, Yang W S, Jeon N J, Seo J, Kim G, Kim K J, Shin T J, Hodes G, Cahen D, Seok S I 2018 Nat. Commun. 9 8Google Scholar
[29] 邵月琴 2016 硕士学位论文 (南京: 南京理工大学)
Shao Y Q 2016 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)
[30] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, DeMarco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 1Google Scholar
[31] Saidaminov M I, Abdelhady A L, Burlakov V, Murali B, Peng W, Dursun D, Wang L, Goriely A, Wu T, Mohammed O F, Bakr O M 2015 Nat. Commun. 6 7586Google Scholar
[32] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar
[33] Peng J, Chen Y, Zheng K, Pullerits T, Liang Z 2017 Chem. Soc. Rev. 46 5714Google Scholar
[34] Zheng J, Hu L, Yun J S, Zhang M, Lau C F, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S, Ho-Baillie A W 2018 ACS Appl. Energy Mater. 1 561
[35] Luo C, Zheng G, Gao F, Wang X J, Zhao Y, Gao X Y, Zhao Q 2022 Joule 6 240Google Scholar
[36] He T W, Li S, Jiang Y Z, Qin C, Cui M H, Qiao L, Xu H Y, Yang J, Long R, Wang H, Yuan M J 2020 Nat. Commun. 11 1Google Scholar
[37] Tang M C, Dang H X, Lee S, Barrit D, Munir R, Wang K, Li R P, Smilgies D M, Wolf S D, Kim D Y, Amassian A 2021 Solar RRL 5 2000718Google Scholar
-
图 1 (a) MAPbI3和MAPbI2Cl的XRD图谱; (b)两相钙钛矿MAPbI2Cl的结构示意图; (c)相应的紫外吸收光谱和带隙. MAPbI3和MAPbI2Cl钙钛矿薄膜的XPS谱图 (d) Pb 4f; (e) I 3d; (f) Cl 2p
Fig. 1. (a) XRD patterns of MAPbI3 and MAPbI2Cl; (b) schematic diagram of the structure of the MAPbI2Cl; (c) UV-Vis absorption spectra of MAPbI3 and MAPbI2Cl (inset: calculated bandgap); (d) XPS spectra of Pb 4f core-level and (e) I 3d core-level of MAPbI3 and MAPbI2Cl ; (f) XPS spectra of Cl 2p core-level of MAPbI2Cl.
图 3 钙钛矿薄膜的(a)稳态PL光谱和(b)瞬态PL光谱; 基于FTO/钙钛矿/碳结构的MAPbI3和MAPbI2Cl钙钛矿器件 (c) SCLC曲线, (d) I-V特性曲线, (e)暗J-V特性曲线; (f)钙钛矿太阳能器件的器件结构图
Fig. 3. (a) Steady-state PL spectra and (b) time-resolved PL spectra of MAPbI3 and MAPbI2Cl; (c) SCLC curves for the MAPbI3 and MAPbI2Cl; (d) I-V curves for the MAPbI3 and MAPbI2Cl; (e) the dark J-V characteristics of MAPbI3 and MAPbI2Cl; (f) perovskite device structure diagram of PSCs.
图 4 (a) AM 1.5 G 100 mW/cm2的模拟太阳光照射下反向扫描的J-V曲线; (b) 器件的效率分布图; (c)器件填充因子分布图; (d)器件的开路电压分布图; (e) MAPbI2Cl和MAPbI3 的IPCE光谱; (f)MAPbI2Cl最大功率点的稳态输出和电流密度
Fig. 4. (a) J-V curve of PSCs under simulated AM 1.5 G sunlight at 100 mW/cm2; statistics of (b) PCE (c) FF and (d) VOC based on MAPbI3 and MAPbI2Cl; (e) IPCE and integrated JSC spectra of MAPbI3 and MAPbI2Cl; (f) power output and current density at the steady-state maximum power point of MAPbI2Cl PSC.
表 1 MAPbI3和MAPbI2Cl钙钛矿薄膜器件的瞬态PL性能参数
Table 1. Transient PL performance parameters of MAPbI3 and MAPbI2Cl perovskite thin film devices.
A1 τ1/ns A2 τ2/ns τave/ns MAPbI3 20.43 63.17 11.86 63.18 63.17 MAPbI2Cl 23.45 503.28 8.05 209.45 466.55 表 2 MAPbI3和MAPbI2Cl作为钙钛矿吸光层制备器件的性能参数
Table 2. Performance parameters of devices prepared by MAPbI3 and MAPbI2Cl as perovskite absorbing layers.
VOC/V JSC/(mA·cm-2) FF PCE/% MAPbI3 1.038 19.84 0.55 11.41 MAPbI2Cl 1.143 18.65 0.64 13.68 -
[1] 张宇辉 2005 北方经济 13 5
Zhang Y H 2005 Northern Eco. 13 5
[2] Huang Q J, Lin J P, Wei C H, Yao R H 2009 Mater. Develop. Appl. 6 93
[3] Shao J Z, Dong W, Deng Z H, Tao R H, Fang X D 2014 Funct. Mater. 45 24008
[4] Yoo J, Shin S, Seo J 2022 ACS Energy Lett. 7 2084Google Scholar
[5] Zhang W H, Peng X C, Feng X D 2014 ECTM 33 7
[6] 郑莹莹 2007 博士学位论文 (杭州: 浙江大学)
Zheng Y Y 2007 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[7] 周军帅 2020 博士学位论文 (北京: 北京化工大学)
Zhou J S 2020 Ph. D. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)
[8] 孙盟杰 2020 博士学位论文 (北京: 北京交通大学)
Sun M J 2020 Ph. D. Dissertation (Beijing: Beijing Jiao tong University) (in Chinese)
[9] 陈聪 2019 博士学位论文 (长春: 吉林大学)
Chen C 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[10] 刘维 2020 硕士学位论文 (南京: 南京邮电大学)
Liu W 2020 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)
[11] 赵电龙, 李天姝, 徐巧玲, 王雪婷, 张立军 2019 中国光学 12 964Google Scholar
Zhao D L, Li T S, Xu Q L, Wang X T, Zhang L J 2019 Chin. Opt. 12 964Google Scholar
[12] Tong G, Lan X, Song Z, Li G, Li H, Yu L, Xu J, Jiang Y, Sheng Y, Shi Y, Chen K 2017 Mater. Today Energy 5 173Google Scholar
[13] Tong G, Son D Y, Ono L K, Liu Y, Hu Y, Zhang H, Jamshaid A, Qiu L, Liu Z, Qi Y B 2020 Adv. Energy Mater. 10 2003712Google Scholar
[14] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Mater. 2 79Google Scholar
[15] Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar
[16] Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar
[17] Pool V L, Gold-Parker A, McGehee M D, Toney M F 2015 Chem. Mater. 27 7240Google Scholar
[18] Xu J, Boyd C, Yu Z J, et al. 2020 Science 367 1097Google Scholar
[19] 王艳香, 罗俊, 郭平春, 赵学国, 杨志胜, 朱华, 孙健 2015 无机材料学报 7 673Google Scholar
Wang Y X, Luo J, Guo P C, Zhao X G, Yang Z S, Zhu H, Sun J 2015 J. Inorg. Mater. 7 673Google Scholar
[20] 刘亚青 2019 博士学位论文 (长春: 吉林大学)
Liu Y Q 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[21] Ng T W, Chan C Y, Lo M F, Guan Z Q Lee C S 2015 J. Mater. Chem. A 3 9081Google Scholar
[22] Liu Z, Ono L K, Qi Y B 2020 J. Energy Chem. 46 215Google Scholar
[23] Wang M, Li B, Siffalovic P, Chen L C, Cao G, Tian J 2018 J. Mater. Chem. A 6 15386Google Scholar
[24] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Sci. 2 79Google Scholar
[25] Jamshaid A, Guo Z, Hieulle J, Stecker C, Ohmann R, Ono L, Qiu L B, Tong G Q, Yin W J, Qi Y B 2021 Energy Environ. Sci. 14 4541
[26] Wang K, Wu C, Hou Y, Yang D, Ye T, Yoon J, Sanghadasa M, Priya S 2020 Energy Environ. Sci. 13 3412Google Scholar
[27] Wu C, Wang K, Li J, Liang Z, Li J, Li W, Zhao L, Chi B, Wang S 2021 Matter 4 775Google Scholar
[28] Park B W, Kedem N, Kulbak M, Lee D Y, Yang W S, Jeon N J, Seo J, Kim G, Kim K J, Shin T J, Hodes G, Cahen D, Seok S I 2018 Nat. Commun. 9 8Google Scholar
[29] 邵月琴 2016 硕士学位论文 (南京: 南京理工大学)
Shao Y Q 2016 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)
[30] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, DeMarco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 1Google Scholar
[31] Saidaminov M I, Abdelhady A L, Burlakov V, Murali B, Peng W, Dursun D, Wang L, Goriely A, Wu T, Mohammed O F, Bakr O M 2015 Nat. Commun. 6 7586Google Scholar
[32] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar
[33] Peng J, Chen Y, Zheng K, Pullerits T, Liang Z 2017 Chem. Soc. Rev. 46 5714Google Scholar
[34] Zheng J, Hu L, Yun J S, Zhang M, Lau C F, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S, Ho-Baillie A W 2018 ACS Appl. Energy Mater. 1 561
[35] Luo C, Zheng G, Gao F, Wang X J, Zhao Y, Gao X Y, Zhao Q 2022 Joule 6 240Google Scholar
[36] He T W, Li S, Jiang Y Z, Qin C, Cui M H, Qiao L, Xu H Y, Yang J, Long R, Wang H, Yuan M J 2020 Nat. Commun. 11 1Google Scholar
[37] Tang M C, Dang H X, Lee S, Barrit D, Munir R, Wang K, Li R P, Smilgies D M, Wolf S D, Kim D Y, Amassian A 2021 Solar RRL 5 2000718Google Scholar
计量
- 文章访问数: 4916
- PDF下载量: 92
- 被引次数: 0