搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于制备成功率和量子效率提升的Te断续、Cs持续沉积制备Cs-Te光阴极

李旭东 姜增公 顾强 张猛 林国强 赵明华 郭力

引用本文:
Citation:

基于制备成功率和量子效率提升的Te断续、Cs持续沉积制备Cs-Te光阴极

李旭东, 姜增公, 顾强, 张猛, 林国强, 赵明华, 郭力

Cs-Te photocathode preparation with Te intermittent and Cs continuous deposition based on improved preparation success rate and quantum efficiency

Li Xu-Dong, Jiang Zeng-Gong, Gu Qiang, Zhang Meng, Lin Guo-Qiang, Zhao Ming-Hua, Guo Li
PDF
HTML
导出引用
  • 为制备产生高品质电子源的高量子效率半导体Cs-Te光阴极, 基于INFN-LASA的Cs-Te光阴极制备方法, 发展一套Te断续、Cs持续沉积制备Cs-Te光阴极的方法. 在SINAP和SARI的光阴极制装置上制备的Cs-Te光阴极, 波长265 nm紫外光照射下, 量子效率大于5%, 并且制备成功率达到100%. 只要制备腔室真空好于10–8 Pa, 这套制备方法就能制备高量子效率的Cs-Te光阴极, 且不因制备装置和操作人员的改变而改变.
    In order to prepare high-quantum-efficiency semiconductor Cs-Te photocathode which can produce a high-quality electron source, based on the INFN-LASA Cs-Te photocathode preparation method, the Cs-Te photocathode preparation method with Te intermittent, Cs continuous deposition is developed. The Cs-Te photocathode with quantum efficiency greater than 5% under 265 nm UV irradiation is successfully prepared in the photocathode preparation device of SINAP and SARI, and the fabrication success rate reaches 100%. As long as the preparation chamber vacuum degree is better than 10–8 Pa, the Cs-Te photocathode with high quantum efficiency can be prepared by this preparation method, which will not be different due to the changes of preparation equipment and operators.
      通信作者: 李旭东, lixudong@sari.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11905276, 12075302)、上海市自然科学基金(批准号: 22ZR1470300)和上海市市级科技重大专项(批准号: 2017SHZDZX02)资助的课题.
      Corresponding author: Li Xu-Dong, lixudong@sari.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905276, 12075302), the Natural Science Foundation of Shanghai, China (Grant No. 22ZR1470300), and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2017SHZDZX02).
    [1]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [2]

    Musumeci P, Navarro J G, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [3]

    向蓉, 全胜文, 林林, 丁原涛, 鲁向阳, 焦飞, 王桂梅, 赵夔 2004 高能物理与核物理 28 771Google Scholar

    Xiang R, Quan S W, Lin L, Ding Y T, Lu X Y, Jiao F, Wang G M, Zhao K 2004 High Energy Phys. Nuc. 28 771Google Scholar

    [4]

    Xiang R, Arnold A, Buettig H, Janssen D, Justus M, Lehnert U, Michel P, Murcek P, Schamlott A, Schneider Ch, Schurig R, Staufenbiel F, Teichert J 2010 Phys. Rev. Spec. Top-Ac. 13 043501Google Scholar

    [5]

    Bossert J, Ganter R, Schaer M, et al. 2014 Proceedings of the 36th International Free Electron Laser Conference Basel, Switzerland, August 25–29, 2014 THP046

    [6]

    Aryshev A, Shevelev M, Honda Y, Terunuma N, Urakawa J. 2017 Appl. Phys. Lett. 111 033508Google Scholar

    [7]

    Panuganti H, Piot P 2017 Appl. Phys. Lett. 110 093505Google Scholar

    [8]

    Pierce C M, Bae J K, Galdi A, Cultrera L, Bazarov I, Maxson J 2021 Appl. Phys. Lett. 118 124101Google Scholar

    [9]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L, Weber M E 1995 Nucl. Instrum. Meth. A 358 284Google Scholar

    [10]

    Schreiber S, Lederer S, Michelato P, et al. 2018 Proceedings of the 38 th International Free-Electron Laser Conference New Mexico, USA, August 20–25 2018 WEP003

    [11]

    Huang P, Qian H, Chen Y, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEP062

    [12]

    Loisch G, Chen Y, Koschitzki C, et al. 2022 Appl. Phys. Lett. 120 104102Google Scholar

    [13]

    Filippetto D, Qian H, Sannibale F 2015 Appl. Phys. Lett. 107 042104Google Scholar

    [14]

    Wisniewski E E, Velazquez D, Yusof Z, Spentzouris L, Terry J, Sarkar T J, Harkay K 2013 Nucl. Instrum. Meth. A 711 60Google Scholar

    [15]

    Wisniewski E, Antipov S, Conde M, et al. 2015 Proceedings of the 6th International Particle Accelerator Conference VA, USA, May 3–8 2015 WEPTY013

    [16]

    Terunuma N, Murata A, Fukuda M, et al. 2010 Nucl. Instrum. Meth. A 613 1Google Scholar

    [17]

    Tamba T, Miyamatsu J, Sakaue K, et al. 2019 Proceedings of the 10th International Particle Accelerator Conference Melbourne, Australia, May 19–24 2019 TUPTS111

    [18]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L 1995 J. Appl. Phys. 77 6031Google Scholar

    [19]

    Michelato P, Di Bona A, Pagani C, et al. 1996 Proceedings of the 5th European Particle Accelerator Conference Barcelona, Spain, June 10–14 1996 p1475

    [20]

    Dai J, Quan S W, Chang C, Liu K X, Zhao K 2012 Chin. Phys. C 36 475Google Scholar

    [21]

    Monaco L, Michelato P, Sertore D, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEA04

    [22]

    Chevallay E, Divall Csatari M, Doebert S, et al. 2012 Proceedings of the 3rd International Particle Accelerator Conference LA, USA, May 20–25 2012 TUPPD066

    [23]

    Gaowei M, Sinsheimer J, Strom D, et al. 2019 Phys. Rev. Accel. Beams. 22 073401Google Scholar

    [24]

    牛军, 张益军, 常本康, 等 2011 60 044209Google Scholar

    Niu J, Zhang Y J, Chang B K, et al. 2011 Acta Phys. Sin. 60 044209Google Scholar

    [25]

    郝广辉, 韩攀阳, 李兴辉, 等 2020 69 108501Google Scholar

    Hao G H, Han P Y, Li X H, et al. 2020 Acta Phys. Sin. 69 108501Google Scholar

    [26]

    王国建, 刘燕文, 李芬, 等 2021 70 218503Google Scholar

    Wang J G, Liu Y W, Li F, et al. 2021 Acta Phys. Sin. 70 218503Google Scholar

    [27]

    Michelato P, Pagani C, Sertore D, di Bona A, Valeri S 1997 Nucl. Instrum. Meth. A 393 464Google Scholar

    [28]

    Sertore D, Michelato P, Monaco L, et al. 2014 J. Vac. Sci. Technol. A 32 031602Google Scholar

  • 图 1  SINAP光阴极制备装置

    Fig. 1.  SINAP photocathode preparation device.

    图 2  SARI光阴极制备装置

    Fig. 2.  SARI photocathode preparation device.

    图 3  Ta蒸发舟

    Fig. 3.  Ta evaporation boat.

    图 4  Te, Cs顺序沉积制备Cs-Te光阴极的步骤及Mo基底上的Cs-Te光阴极

    Fig. 4.  The Cs-Te photocathode preparation steps with Te, Cs sequential deposition and the Cs-Te photocathode on Mo substrate.

    图 5  Te和Cs源的沉积厚度、反射率、量子效率和真空度随时间的变化

    Fig. 5.  The variation of deposition thickness, reflectivity, quantum efficiency and vacuum degree of Te and Cs evaporation sources with time.

    图 6  Cs-Te光阴极的热退火研究

    Fig. 6.  Thermal annealing study of Cs-Te photocathode.

    图 7  基底和非基底上的Cs-Te光阴极, 几次制备过程中电流(光电流+暗电流)变化

    Fig. 7.  The Cs-Te photocathode on substrate and non-substrate, the current (photocurrent + dark current) variation during several preparation processes.

    图 8  开缝的SS304管

    Fig. 8.  The SS304 pipe with slit.

    图 9  Te断续、Cs持续沉积制备Cs-Te光阴极过程

    Fig. 9.  The Cs-Te photocathode preparation process with Te intermittent, Cs continuous deposition.

    图 10  Te和Cs源的沉积厚度、反射率、量子效率和真空度随时间的变化

    Fig. 10.  The variation of deposition thickness, reflectivity, quantum efficiency and vacuum degree of Te and Cs evaporation sources with time.

    图 11  Te, Cs顺序沉积与Te断续、Cs持续沉积制备Cs-Te光阴极对比

    Fig. 11.  The comparison of Cs-Te photocathode preparation between with Te, Cs sequential deposition and Te intermittent, Cs continuous deposition.

    图 12  热退火Cs-Te光阴极时, 量子效率与温度的关系

    Fig. 12.  The relationship between quantum efficiency and temperature during thermal annealing of Cs-Te photocathode.

    图 13  制备过程中光电流收集电路及制备好的Cs-Te光阴极

    Fig. 13.  Photocurrent collection circuit during the photocathode preparation process and Cs-Te photocathode.

    图 14  Cs-Te光阴极制备过程中, 量子效率变化

    Fig. 14.  The quantum efficiency changes during the Cs-Te photocathode preparation process.

    图 15  光阴极制备过程中, 光电流收集电路及制备好的Cs-Te光阴极

    Fig. 15.  Photocurrent collection circuit during the photocathode preparation process and Cs-Te photocathode.

    图 16  基底在室温和100 ℃时, 光阴极制备过程中Cs-Te光阴极量子效率变化

    Fig. 16.  The change of the quantum efficiency of Cs-Te photocathode during the preparation process at substrate room temperature and 100 ℃.

    Baidu
  • [1]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [2]

    Musumeci P, Navarro J G, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [3]

    向蓉, 全胜文, 林林, 丁原涛, 鲁向阳, 焦飞, 王桂梅, 赵夔 2004 高能物理与核物理 28 771Google Scholar

    Xiang R, Quan S W, Lin L, Ding Y T, Lu X Y, Jiao F, Wang G M, Zhao K 2004 High Energy Phys. Nuc. 28 771Google Scholar

    [4]

    Xiang R, Arnold A, Buettig H, Janssen D, Justus M, Lehnert U, Michel P, Murcek P, Schamlott A, Schneider Ch, Schurig R, Staufenbiel F, Teichert J 2010 Phys. Rev. Spec. Top-Ac. 13 043501Google Scholar

    [5]

    Bossert J, Ganter R, Schaer M, et al. 2014 Proceedings of the 36th International Free Electron Laser Conference Basel, Switzerland, August 25–29, 2014 THP046

    [6]

    Aryshev A, Shevelev M, Honda Y, Terunuma N, Urakawa J. 2017 Appl. Phys. Lett. 111 033508Google Scholar

    [7]

    Panuganti H, Piot P 2017 Appl. Phys. Lett. 110 093505Google Scholar

    [8]

    Pierce C M, Bae J K, Galdi A, Cultrera L, Bazarov I, Maxson J 2021 Appl. Phys. Lett. 118 124101Google Scholar

    [9]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L, Weber M E 1995 Nucl. Instrum. Meth. A 358 284Google Scholar

    [10]

    Schreiber S, Lederer S, Michelato P, et al. 2018 Proceedings of the 38 th International Free-Electron Laser Conference New Mexico, USA, August 20–25 2018 WEP003

    [11]

    Huang P, Qian H, Chen Y, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEP062

    [12]

    Loisch G, Chen Y, Koschitzki C, et al. 2022 Appl. Phys. Lett. 120 104102Google Scholar

    [13]

    Filippetto D, Qian H, Sannibale F 2015 Appl. Phys. Lett. 107 042104Google Scholar

    [14]

    Wisniewski E E, Velazquez D, Yusof Z, Spentzouris L, Terry J, Sarkar T J, Harkay K 2013 Nucl. Instrum. Meth. A 711 60Google Scholar

    [15]

    Wisniewski E, Antipov S, Conde M, et al. 2015 Proceedings of the 6th International Particle Accelerator Conference VA, USA, May 3–8 2015 WEPTY013

    [16]

    Terunuma N, Murata A, Fukuda M, et al. 2010 Nucl. Instrum. Meth. A 613 1Google Scholar

    [17]

    Tamba T, Miyamatsu J, Sakaue K, et al. 2019 Proceedings of the 10th International Particle Accelerator Conference Melbourne, Australia, May 19–24 2019 TUPTS111

    [18]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L 1995 J. Appl. Phys. 77 6031Google Scholar

    [19]

    Michelato P, Di Bona A, Pagani C, et al. 1996 Proceedings of the 5th European Particle Accelerator Conference Barcelona, Spain, June 10–14 1996 p1475

    [20]

    Dai J, Quan S W, Chang C, Liu K X, Zhao K 2012 Chin. Phys. C 36 475Google Scholar

    [21]

    Monaco L, Michelato P, Sertore D, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEA04

    [22]

    Chevallay E, Divall Csatari M, Doebert S, et al. 2012 Proceedings of the 3rd International Particle Accelerator Conference LA, USA, May 20–25 2012 TUPPD066

    [23]

    Gaowei M, Sinsheimer J, Strom D, et al. 2019 Phys. Rev. Accel. Beams. 22 073401Google Scholar

    [24]

    牛军, 张益军, 常本康, 等 2011 60 044209Google Scholar

    Niu J, Zhang Y J, Chang B K, et al. 2011 Acta Phys. Sin. 60 044209Google Scholar

    [25]

    郝广辉, 韩攀阳, 李兴辉, 等 2020 69 108501Google Scholar

    Hao G H, Han P Y, Li X H, et al. 2020 Acta Phys. Sin. 69 108501Google Scholar

    [26]

    王国建, 刘燕文, 李芬, 等 2021 70 218503Google Scholar

    Wang J G, Liu Y W, Li F, et al. 2021 Acta Phys. Sin. 70 218503Google Scholar

    [27]

    Michelato P, Pagani C, Sertore D, di Bona A, Valeri S 1997 Nucl. Instrum. Meth. A 393 464Google Scholar

    [28]

    Sertore D, Michelato P, Monaco L, et al. 2014 J. Vac. Sci. Technol. A 32 031602Google Scholar

  • [1] 王国建, 刘燕文, 李芬, 田宏, 朱虹, 李云, 赵恒邦, 王小霞, 张志强. 离子束表面处理对光电阴极发射的影响.  , 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [2] 彭新村, 王智栋, 邓文娟, 朱志甫, 邹继军, 张益军. 光学共振增强的表面铯激活银纳米结构光阴极.  , 2020, 69(6): 068501. doi: 10.7498/aps.69.20191420
    [3] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究.  , 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [4] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [5] 陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉. 指数掺杂反射式GaAlAs和GaAs光电阴极比较研究.  , 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [6] 蔡志鹏, 杨文正, 唐伟东, 侯洵. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析.  , 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [7] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定.  , 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [8] 郭向阳, 常本康, 王晓晖, 张益军, 杨铭. 反射式负电子亲和势GaN光电阴极的光电发射及稳定性研究.  , 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [9] 付小倩, 常本康, 李飙, 王晓晖, 乔建良. 负电子亲和势GaN光电阴极的研究进展.  , 2011, 60(3): 038503. doi: 10.7498/aps.60.038503
    [10] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴. 梯度掺杂与均匀掺杂GaN光电阴极的对比研究.  , 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [11] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.  , 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [12] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究.  , 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [13] 乔建良, 常本康, 钱芸生, 杜晓晴, 王晓晖, 郭向阳. 反射式NEA GaN光电阴极量子效率恢复研究.  , 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [14] 乔建良, 常本康, 杜晓晴, 牛军, 邹继军. 反射式负电子亲和势GaN光电阴极量子效率衰减机理研究.  , 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [15] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究.  , 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [16] 杜晓晴, 常本康. 负电子亲和势光电阴极量子效率公式的修正.  , 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [17] 李敏, 尼启良, 陈波. 极端紫外波段碱卤化物光阴极材料量子效率计算.  , 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [18] 杨振萍, 李正红. 光阴极RF腔中微波过程研究.  , 2008, 57(5): 2627-2632. doi: 10.7498/aps.57.2627
    [19] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性.  , 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [20] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
计量
  • 文章访问数:  4064
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 修回日期:  2022-05-08
  • 上网日期:  2022-08-24
  • 刊出日期:  2022-09-05

/

返回文章
返回
Baidu
map