-
针对小天体探测任务对离子推力器设计要求, 完成总体方案设计, 开展了四极环形磁钢会切场放电室和凸面三栅变孔径栅极设计, 采用试验研究和理论分析的方法研究了放电室、栅极设计的合理性及匹配性, 试验结果表明: 多模式离子推力器实现了宽范围稳定放电和引出, 在277—3120 W功率下, 推力从9.9 mN线性增加到117.2 mN, 比冲从1269 s台阶上升到3492 s, 束流发散角从30.7°下降到26.8°并趋于稳定, 各工作点矢量偏角小于1.5°, 束流平直度大于0.75, 栅极稳定化处理是控制栅间距一致性的重要方法, 采用应力释放钼安装环热设计后栅极间距极差得到有效控制, 最大下降百分比为90%, 本研究为离子推力器多模式化设计及在轨应用工程研制提供参考.In view of the application requirements of electric propulsion system for China’s asteroid deep space exploration mission, the overall scheme is designed, an ion thruster prototype model is established by using a four-ring-cusp field discharge chamber, 30-cm beam current extraction diameter three-grid ion optics system. Reasonableness and compatibility of discharge chamber and grid design are verified experimentally and theoretically . The test results are shown below. The ion thruster can operate steadily over an input power envelope of 277–3120 W, thrust increases linearly from 9.9 to 117.2 mN, specific impulse rises from 1269 to 3492 s, the beam divergence angle drops from 30.7° to 26.8° and stabilizes above a certain power value, the thrust vector angle is less than 1.5° and beam flatness parameter is greater than 0.75 at different operating points. The maximum percentage reduction in grid gap aberration is 90% with the strain relief molybdenum mounting ring thermal design. This research provides a reference for multi-mode ion thruster design and in-orbit engineering applications.
-
Keywords:
- ion thruster /
- multi-mode /
- ring-cusp field /
- convex triple grids with variable aperture /
- thermal design
[1] Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar
[2] Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar
[3] 李建鹏, 靳伍银, 赵以德 2022 71 015202
Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202
[4] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1
[5] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut 47 475Google Scholar
[6] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1
[7] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1
[8] Herman D A , Soulas G C , Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 08–11, 2007 p2007-5212-1
[9] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1
[10] Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power 28 371Google Scholar
[11] Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68
[12] Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol 20 025006Google Scholar
[13] Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95
[14] Piel A, Brown M 2011 Phys. Today 64 55
[15] Brophy J R, Wilbur P J 1985 AIAA J 23 1731Google Scholar
[16] Arakawa Y, Wilbur P J 1991 J. Propul. Power 7 125Google Scholar
[17] Mahalingam S, Menart J A 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4262-1
[18] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[19] 陈茂林, 夏广庆, 毛根旺 2014 63 182901
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901
[20] 龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901
[21] Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol 17 035010Google Scholar
[22] Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1
[23] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203
[24] 李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435
Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435
[25] 李建鹏, 靳伍银, 赵以德 2022 71 075203
Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 075203
[26] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p115
[27] 张天平, 杨福全, 李娟 2020 离子电推进技术 (上海: 科学出版社) 第91页
Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese)
-
表 1 离子推力器放电室设计参数
Table 1. Design parameters of the ion thruster discharge chamber.
几何构型 直段 + 锥段阳极筒 放电室口径和栅极直径比 1—1.2 长径比 0.4—1 磁极数 4 无量纲后磁极间距离 0.6—0.85 闭合磁等势线/Gs 50—60 磁体体积宽度比/cm2 0.4—0.8 永磁体剩磁/Gs ≥9500 永磁体矫顽力/(kA·m–1) ≥700 表 2 离子光学系统屏栅变孔径分区及归一化后参数
Table 2. Normalized parameters for screen grids with variable aperture zones.
分区 分区范围 孔径 0—OA 0—3 1 OA—OB 3—5 1.05 OB—OC 5—12 1 OC—OD 12—15 0.94 表 3 离子光学系统设计参数
Table 3. Design parameters of the ion optical system for ion thrusters.
参数名称 参数指标 栅极材料 Mo 栅极直径/cm 30 束流直径/cm 28.6 屏栅加速栅厚度比 1∶1.1 加速栅减速栅厚度比 1∶1.1 屏栅加速栅孔径比 3∶2 屏栅减速栅孔径比 9∶8 栅间距 1 屏栅加速栅透明度比 1.45 屏栅减速栅透明度比 2.52 表 4 优化前后栅极稳定化处理后栅间距变化量
Table 4. Variation in grid gap with stabilization before and after optimization.
四周变化
量/mm中心变化
量/mm四周极
差/mm中心极
差/mm屏栅-加速 优化前 0.228 0.235 0.100 0.330 优化后 0.131 0.165 0.010 0.180 加速-减速 优化前 0.206 0.166 0.290 0.290 优化后 0.021 0.060 0.075 0.115 -
[1] Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar
[2] Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar
[3] 李建鹏, 靳伍银, 赵以德 2022 71 015202
Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202
[4] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1
[5] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut 47 475Google Scholar
[6] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1
[7] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1
[8] Herman D A , Soulas G C , Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 08–11, 2007 p2007-5212-1
[9] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1
[10] Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power 28 371Google Scholar
[11] Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68
[12] Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol 20 025006Google Scholar
[13] Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95
[14] Piel A, Brown M 2011 Phys. Today 64 55
[15] Brophy J R, Wilbur P J 1985 AIAA J 23 1731Google Scholar
[16] Arakawa Y, Wilbur P J 1991 J. Propul. Power 7 125Google Scholar
[17] Mahalingam S, Menart J A 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4262-1
[18] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[19] 陈茂林, 夏广庆, 毛根旺 2014 63 182901
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901
[20] 龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901
[21] Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol 17 035010Google Scholar
[22] Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1
[23] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203
[24] 李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435
Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435
[25] 李建鹏, 靳伍银, 赵以德 2022 71 075203
Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 075203
[26] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p115
[27] 张天平, 杨福全, 李娟 2020 离子电推进技术 (上海: 科学出版社) 第91页
Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese)
计量
- 文章访问数: 3783
- PDF下载量: 66
- 被引次数: 0