搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模式离子推力器放电室和栅极设计及其性能实验研究

李建鹏 赵以德 靳伍银 张兴民 李娟 王彦龙

引用本文:
Citation:

多模式离子推力器放电室和栅极设计及其性能实验研究

李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙

Design and performance test of discharge chamber and grid for multi-mode ion thrusters

Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long
PDF
HTML
导出引用
  • 针对小天体探测任务对离子推力器设计要求, 完成总体方案设计, 开展了四极环形磁钢会切场放电室和凸面三栅变孔径栅极设计, 采用试验研究和理论分析的方法研究了放电室、栅极设计的合理性及匹配性, 试验结果表明: 多模式离子推力器实现了宽范围稳定放电和引出, 在277—3120 W功率下, 推力从9.9 mN线性增加到117.2 mN, 比冲从1269 s台阶上升到3492 s, 束流发散角从30.7°下降到26.8°并趋于稳定, 各工作点矢量偏角小于1.5°, 束流平直度大于0.75, 栅极稳定化处理是控制栅间距一致性的重要方法, 采用应力释放钼安装环热设计后栅极间距极差得到有效控制, 最大下降百分比为90%, 本研究为离子推力器多模式化设计及在轨应用工程研制提供参考.
    In view of the application requirements of electric propulsion system for China’s asteroid deep space exploration mission, the overall scheme is designed, an ion thruster prototype model is established by using a four-ring-cusp field discharge chamber, 30-cm beam current extraction diameter three-grid ion optics system. Reasonableness and compatibility of discharge chamber and grid design are verified experimentally and theoretically . The test results are shown below. The ion thruster can operate steadily over an input power envelope of 277–3120 W, thrust increases linearly from 9.9 to 117.2 mN, specific impulse rises from 1269 to 3492 s, the beam divergence angle drops from 30.7° to 26.8° and stabilizes above a certain power value, the thrust vector angle is less than 1.5° and beam flatness parameter is greater than 0.75 at different operating points. The maximum percentage reduction in grid gap aberration is 90% with the strain relief molybdenum mounting ring thermal design. This research provides a reference for multi-mode ion thruster design and in-orbit engineering applications.
      通信作者: 靳伍银, 1171341698@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61601210)、甘肃省青年科技基金计划(批准号:22JR5RA789)、甘肃省科技计划 (批准号: 21JR7RA744)和中国空间技术研究院杰出青年人才基金资助的课题.
      Corresponding author: Jin Wu-Yin, 1171341698@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210), the Gansu Province Young Science and Technology Talents Support Project(Grant No. 22JR5RA789), the Science and Technology Program of Gansu Province, China (Grant No. 21JR7RA744), and the Fund for Distinguished Young Scholars of China Academy of Space Technology.
    [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    李建鹏, 靳伍银, 赵以德 2022 71 015202

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202

    [4]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [5]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut 47 475Google Scholar

    [6]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [7]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [8]

    Herman D A , Soulas G C , Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 08–11, 2007 p2007-5212-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power 28 371Google Scholar

    [11]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [12]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol 20 025006Google Scholar

    [13]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [14]

    Piel A, Brown M 2011 Phys. Today 64 55

    [15]

    Brophy J R, Wilbur P J 1985 AIAA J 23 1731Google Scholar

    [16]

    Arakawa Y, Wilbur P J 1991 J. Propul. Power 7 125Google Scholar

    [17]

    Mahalingam S, Menart J A 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4262-1

    [18]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [19]

    陈茂林, 夏广庆, 毛根旺 2014 63 182901

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901

    [20]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol 17 035010Google Scholar

    [22]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [23]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203

    [24]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [25]

    李建鹏, 靳伍银, 赵以德 2022 71 075203

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 075203

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p115

    [27]

    张天平, 杨福全, 李娟 2020 离子电推进技术 (上海: 科学出版社) 第91页

    Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese)

  • 图 1  四极环形磁铁会切场示意图

    Fig. 1.  Schematic diagram of ring magnets cusp field.

    图 2  四极会切磁场多极边界剖面图, 包括磁力线及磁场等值线分布

    Fig. 2.  Cross section (side) view of a four-ring-cusp magnetic multipole boundary showing the magnetic field lines and examples of contours of constant magnetic field.

    图 3  放电室磁感应强度等值线

    Fig. 3.  Magnetic field contours in the ion thruster discharge chamber.

    图 4  变孔径屏栅示意图

    Fig. 4.  Diagram of the variable aperture screen grid.

    图 5  改进前后栅极边缘变形情况对比 (a) 无应力释放钛安装环; (b) 应力释放钼安装环

    Fig. 5.  Comparison of grid edge deformation before and after improvement: (a) Ti mounting ring without strain relief; (b) Mo mounting ring with strain relief.

    图 6  离子推力器原理样机

    Fig. 6.  Ion thruster prototype model.

    图 7  离子推力器点火照片

    Fig. 7.  Discharge of the ion thruster.

    图 8  试验组成图

    Fig. 8.  Schematic diagram of experimental principle.

    图 9  离子束电流随功率变化曲线

    Fig. 9.  Ion beam current as a function of input power.

    图 10  推力、比冲随功率变化曲线

    Fig. 10.  Thrust, specific impulse as a function of input power

    图 11  不同测量点屏栅-加速栅间距 (a) 优化前; (b) 优化后

    Fig. 11.  Screen grid-acceleration grid spacing at different measurement position: (a) Before optimization; (b) after optimization.

    图 12  不同测量点加速栅-减速栅间距 (a) 优化前; (b) 优化后

    Fig. 12.  Accelerator-decelerator spacing at different measurement position: (a) Before optimization; (b) after optimization

    图 13  推力器不同工作点下的束流发散角和矢量偏角

    Fig. 13.  Beam divergence angle and thrust vector angle at different operating points.

    图 14  栅极热稳定设计优化前后束流密度分布

    Fig. 14.  Radial beam current density profile before and after optimization of grid thermal stabilization design.

    图 15  推力器不同工作点下的束流密度分布

    Fig. 15.  Radial beam current density profile at different operating points.

    表 1  离子推力器放电室设计参数

    Table 1.  Design parameters of the ion thruster discharge chamber.

    几何构型直段 + 锥段阳极筒
    放电室口径和栅极直径比1—1.2
    长径比0.4—1
    磁极数4
    无量纲后磁极间距离0.6—0.85
    闭合磁等势线/Gs50—60
    磁体体积宽度比/cm20.4—0.8
    永磁体剩磁/Gs≥9500
    永磁体矫顽力/(kA·m–1)≥700
    下载: 导出CSV

    表 2  离子光学系统屏栅变孔径分区及归一化后参数

    Table 2.  Normalized parameters for screen grids with variable aperture zones.

    分区分区范围孔径
    0—OA0—31
    OA—OB3—51.05
    OB—OC5—121
    OC—OD12—150.94
    下载: 导出CSV

    表 3  离子光学系统设计参数

    Table 3.  Design parameters of the ion optical system for ion thrusters.

    参数名称参数指标
    栅极材料Mo
    栅极直径/cm30
    束流直径/cm28.6
    屏栅加速栅厚度比1∶1.1
    加速栅减速栅厚度比1∶1.1
    屏栅加速栅孔径比3∶2
    屏栅减速栅孔径比9∶8
    栅间距1
    屏栅加速栅透明度比1.45
    屏栅减速栅透明度比2.52
    下载: 导出CSV

    表 4  优化前后栅极稳定化处理后栅间距变化量

    Table 4.  Variation in grid gap with stabilization before and after optimization.

    四周变化
    量/mm
    中心变化
    量/mm
    四周极
    差/mm
    中心极
    差/mm
    屏栅-加速优化前0.2280.2350.1000.330
    优化后0.1310.1650.0100.180
    加速-减速优化前0.2060.1660.2900.290
    优化后0.0210.0600.0750.115
    下载: 导出CSV
    Baidu
  • [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    李建鹏, 靳伍银, 赵以德 2022 71 015202

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202

    [4]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [5]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut 47 475Google Scholar

    [6]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [7]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [8]

    Herman D A , Soulas G C , Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 08–11, 2007 p2007-5212-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk J E 2012 J. Propul. Power 28 371Google Scholar

    [11]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [12]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol 20 025006Google Scholar

    [13]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [14]

    Piel A, Brown M 2011 Phys. Today 64 55

    [15]

    Brophy J R, Wilbur P J 1985 AIAA J 23 1731Google Scholar

    [16]

    Arakawa Y, Wilbur P J 1991 J. Propul. Power 7 125Google Scholar

    [17]

    Mahalingam S, Menart J A 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4262-1

    [18]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [19]

    陈茂林, 夏广庆, 毛根旺 2014 63 182901

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901

    [20]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901

    [21]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol 17 035010Google Scholar

    [22]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [23]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203

    [24]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [25]

    李建鹏, 靳伍银, 赵以德 2022 71 075203

    Li J P, Jin W Y, Zhao Y D 2022 Acta Phys. Sin. 71 075203

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p115

    [27]

    张天平, 杨福全, 李娟 2020 离子电推进技术 (上海: 科学出版社) 第91页

    Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese)

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究.  , 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究.  , 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [3] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理.  , 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响.  , 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [5] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿.  , 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [6] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究.  , 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [7] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平. 屏栅边缘小孔孔径对离子推力器性能的影响.  , 2020, 69(11): 115203. doi: 10.7498/aps.69.20200358
    [8] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺. 嵌入式三色光变器设计.  , 2018, 67(2): 024202. doi: 10.7498/aps.67.20170782
    [9] 刘辉, 蒋文嘉, 宁中喜, 崔凯, 曾明, 曹希峰, 于达仁. 使用不同工质的会切磁场等离子体推力器.  , 2018, 67(14): 145201. doi: 10.7498/aps.67.20180366
    [10] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性.  , 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [11] 夏舸, 杨立, 寇蔚, 杜永成. 基于变换热力学的三维任意形状热斗篷设计.  , 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [12] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究.  , 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [13] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法.  , 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [14] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计.  , 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [15] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析.  , 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [16] 李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌. 基于变换热力学的任意形状热集中器研究与设计.  , 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [17] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [18] 王维, 杨兰均, 高洁, 刘帅. 多针-网电极离子风激励器推力与推功比的实验研究.  , 2013, 62(7): 075205. doi: 10.7498/aps.62.075205
    [19] 杨超, 刘大刚, 陈颖, 夏蒙重, 王学琼, 王小敏. 多峰离子源的三维数值模拟优化与设计.  , 2012, 61(13): 135203. doi: 10.7498/aps.61.135203
    [20] 杨 涓, 苏纬仪, 毛根旺, 夏广庆. 外加磁场微波等离子推力器内流场数值模拟.  , 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
计量
  • 文章访问数:  3783
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 修回日期:  2022-06-09
  • 上网日期:  2022-09-27
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map