搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向激光驱动质子束应用的弱聚焦磁场束线设计研究

朱军高 卢海洋 赵媛 赖美福 古永力 徐世祥 周沧涛

引用本文:
Citation:

面向激光驱动质子束应用的弱聚焦磁场束线设计研究

朱军高, 卢海洋, 赵媛, 赖美福, 古永力, 徐世祥, 周沧涛

Beamline design with weak-focusing magnetic field for applications of laser-driven proton beams

Zhu Jun-Gao, Lu Hai-Yang, Zhao Yuan, Lai Mei-Fu, Gu Yong-Li, Xu Shi-Xiang, Zhou Cang-Tao
PDF
HTML
导出引用
  • 随着高功率激光技术的进步, 激光等离子体加速因其优异的加速结构获得迅速发展, 现已获得近百MeV质子以及数GeV电子输出. 激光驱动质子束具有μm量级尺寸、ps量级脉冲长度的优异品质. 由于强激光场的存在, 原位直接应用存在一定困难, 因而更多应用场景需要通过束线把质子束传输到应用端. 激光加速离子束由于具有宽能谱和大散角的特点, 通过束线传输具有一定困难. 常梯度磁场中的弱聚焦作用具有特别的优势: 在水平和竖直方向可同时聚焦, 在水平方向可进行能量分析, 在水平和竖直方向的聚焦力可以通过磁场降落指数n进行分配, 色差效应影响较小. 通过对质子束在弱聚焦磁场中运动的束流动力学的研究, 探索了弱聚焦作用在大能散、大散角质子束聚焦和能量分析中的要求、特点和优势. 在合适的束流光学设计中, 可以实现聚焦、选能的同时, 压缩脉冲长度, 有效缩减束线尺寸, 优势显著.
    With the development of high-power laser technology, laser plasma acceleration has developed rapidly due to its excellent acceleration structure. Nearly one-hundred-MeV proton beams and several GeV electron outputs are obtained. The laser-driven proton beams have excellent quality of μm-scale sizes and ps-scale pulse lengths. Owing to the existence of the accelerating laser field, direct application is difficult, so the proton beams need to be transmitted to the application terminal through the beamline. However, the wide energy spectrum and large divergence angle bring difficulties in transmitting the beam. The weak focusing in the constant gradient magnetic field is neglected in the transmission of laser-driven particle beams because of the relatively weak focusing force. But weak focusing has special advantages: simultaneous focusing in the horizontal direction and the vertical direction, energy analysis in the horizontal direction, focusing force in the horizontal and vertical direction distributed by the field index n, and smaller influence of chromatic aberration effect.In this paper, we propose the beam transmission with weak-focusing magnet. The requirements for the focusing of proton beams with the same energy and different divergence angles in the X direction and Y direction in the weak-focusing magnetic field are explored by studying the linear beam dynamics of the beams. Then the conditions of precise energy analysis for particle beams with large divergence angle can be determined. For beams with 2% energy spread, the lengths of the drift space before and after the weak-focusing magnet and deflection radius are scanned to find out the minimum beam size and the shortest pulse length after transmission. It is found that a certain combination of drift space and deflection radius can minimize the beam size or the pulse length. Focusing and energy selection can be achieved while compressing the pulse length and effectively reducing the size of the beamline, which has significant advantages. When the deflection radius is 0.65 m, the proton beam with 20 MeV energy, 2% energy spread, and an initial divergence angle of ±50 mrad has the root-mean-square size of 108 μm in both the X direction and the Y direction, and a pulse length of 154 ps at the application terminal.Comparing with common beam transmission elements such as quadrupole lenses and deflection magnets, the laser-accelerated ion beam benefits from the integration of focusing and energy analysis of weak-focusing magnetic fields (focusing and energy analysis exist at the same time and continuously change with deflection angle), as well as the horizontal and vertical focusing forces can be distributed by the magnetic field index n (the larger the n, the stronger the focusing force in the vertical direction is and the weaker the focusing force in the horizontal direction). When the proton beam is transmitted in a weak-focusing magnetic field, the advantages of the focusing element and the energy selection element are combined, so the influence of the chromatic aberration effect can be reduced, the pulse length can be compressed, and the beamline size can be effectively reduced.
      通信作者: 卢海洋, luhaiyang@sztu.edu.cn ; 徐世祥, shxxu@szu.edu.cn ; 周沧涛, zcangtao@sztu.edu.cn
    • 基金项目: 深圳市基础研究资助项目(批准号: SZWD2021007, JCYJ20200109105606426)、国家自然科学基金(批准号: 92050203)和等离子体物理重点实验室资助的课题.
      Corresponding author: Lu Hai-Yang, luhaiyang@sztu.edu.cn ; Xu Shi-Xiang, shxxu@szu.edu.cn ; Zhou Cang-Tao, zcangtao@sztu.edu.cn
    • Funds: Project supported by the Fundamental Research Program of Shenzhen, China (Grant Nos. SZWD2021007, JCYJ20200109105606426), the National Natural Science Foundation of China (Grant No. 92050203), and the Key Laboratory of Plasma Physics, China.
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Kim I J, Pae K H, Choi I W, Lee C L, Kim H T, Singhal H, Sung J H, Lee S K, Lee H W, Nickles P V, Jeong T M, Kim C M, Nam C H 2016 Phys. Plasmas 23 070701Google Scholar

    [3]

    Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724Google Scholar

    [4]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely RA 2001 Phys. Plasmas 8 542Google Scholar

    [5]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003Google Scholar

    [6]

    Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J, Fernández J C 2007 Phys. Plasmas 14 056706Google Scholar

    [7]

    Dromey B, Coughlan M, Senje L, Taylor M, Kuschel S, Villagomez-Bernabe B, Stefanuik R, Nersisyan G, Stella L, Kohanoff J, Borghesi M, Currell F, Riley D, Jung D, Wahlström C G, Lewis C L S, Zepf M 2016 Nat. Commun. 7 10642Google Scholar

    [8]

    Romagnani L, Fuchs J, Borghesi M, Antici P, Audebert P, Ceccherini F, Cowan T, Grismayer T, Kar S, MacChi A, Mora P, Pretzler G, Schiavi A, Toncian T, Willi O 2005 Phys. Rev. Lett. 95 195001Google Scholar

    [9]

    Nakamura T, Sakagami H, Johzaki T, Nagatomo H, Mima K, Koga J 2007 Phys. Plasmas 14 103105Google Scholar

    [10]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [11]

    Morrison J T, Feister S, Frische K D, Austin D R, Ngirmang G K, Murphy N R, Orban C, Chowdhury E A, Roquemore W M 2018 New J. Phys. 20 022001Google Scholar

    [12]

    Nishiuchi M, Daito I, Ikegami M, Daido H, Mori M, Orimo S, Ogura K, Sagisaka A, Yogo A, Pirozhkov A S, Sugiyama H, Kiriyama H, Okada H, Kanazawa S, Kondo S, Shimomura T, Tanoue M, Nakai Y, Sasao H, Wakai D, Sakaki H, Bolton P, Choi I W, Sung J H, Lee J, Oishi Y, Fujii T, Nemoto K, Souda H, Noda A, Iseki Y, Yoshiyuki T 2009 Appl. Phys. Lett. 94 61107Google Scholar

    [13]

    Schollmeier M, Becker S, Geißel M, Flippo K A, Blažević A, Gaillard S A, Gautier D C, Grüner F, Harres K, Kimmel M, others 2008 Phys. Rev. Lett. 101 55004Google Scholar

    [14]

    Pommarel L, Vauzour B, Mégnin-Chanet F, Bayart E, Delmas O, Goudjil F, Nauraye C, Letellier V, Pouzoulet F, Schillaci F, Romano F, Scuderi V, Cirrone G A P, Deutsch E, Flacco A, Malka V 2017 Phys. Rev. Accel. Beams 20 032801Google Scholar

    [15]

    Zhu J G, Wu M J, Zhu K, Geng Y X, Liao Q, Li D Y, Yang T, Easton M J, Li C C, Xu X H, Shou Y R, Yu J Q, Gong Z, Zhao Y Y, Wang P J, Wang D H, Tao L, Chen C E, Ma W J, Lu H Y, Tajima T, Mourou G, Lin C, Yan X Q 2020 Phys. Rev. Accel. Beams 23 121304Google Scholar

    [16]

    Zhu J G, Wu M J, Liao Q, Geng Y X, Zhu K, Li C C, Xu X H, Li D Y, Shou Y R, Yang T, Wang P J, Wang D H, Wang J J, Chen C E, He X T, Zhao Y Y, Ma W J, Lu H Y, Tajima T, Lin C, Yan X Q 2019 Phys. Rev. Accel. Beams 22 061302Google Scholar

    [17]

    Hofmann I, Meyer-ter-Vehn J, Yan X, Orzhekhovskaya A, Yaramyshev S 2011 Phys. Rev. Spec. Top. Accel. Beams 14 31304Google Scholar

    [18]

    Harres K, Alber I, Tauschwitz A, Bagnoud V, Daido H, Günther M, Nürnberg F, Otten A, Schollmeier M, Schütrumpf J, Tampo M, Roth M 2010 Phys. Plasmas 17 23107Google Scholar

    [19]

    Agosteo S, Anania M P, Caresana M, Cirrone G A P, Martinis C De, Side D D, Fazzi A, Gatti G, Giove D, Giulietti D, Gizzi L A, Labate L, Londrillo P, Maggiore M, Nassisi V, Sinigardi S, Tramontana A, Schillaci F, Scuderi V, Turchetti G, Varoli V, Velardi L 2014 Nucl. Inst. Methods Phys. Res. B 331 15Google Scholar

    [20]

    Burris-Mog T, Harres K, Nürnberg F, Busold S, Bussmann M, Deppert O, Hoffmeister G, Joost M, Sobiella M, Tauschwitz A, Zielbauer B, Bagnoud V, Herrmannsdoerfer T, Roth M, Cowan T E 2011 Phys. Rev. Spec. Top. Accel. Beams 14 121301Google Scholar

    [21]

    Roth M, Alber I, Bagnoud V, Brown C R D, Clarke R, Daido H, Fernandez J, Flippo K, Gaillard S, Gauthier C, et al. 2009 Plasma Phys. Controlled Fusion 51 124039Google Scholar

    [22]

    Hofmann I, Meyer-Ter-Vehn J, Yan X, Al-Omari H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. A 681 44Google Scholar

    [23]

    Milluzzo G, Pipek J, Amico A G, Cirrone G A P, Cuttone G, Korn G, Larosa G, Leanza R, Margarone D, Petringa G, Russo A, Schillaci F, Scuderi V, Romano F 2018 Nucl. Instrum. Methods Phys. Res. , Sect. A 909 298Google Scholar

    [24]

    Qi F F, Ma Z R, Zhao L R, Cheng Y, Jiang W X, Lu C, Jiang T, Qian D, Wang Z, Zhang W T, Zhu P F, Zou X, Wan W S, Xiang D, Zhang J 2020 Phys. Rev. Lett. 124 134803Google Scholar

    [25]

    Scisciò M, Lancia L, Migliorati M, Mostacci A, Palumbo L, Papaphilippou Y, Antici P 2016 J. Appl. Phys. 119 535

    [26]

    陈佳洱 2012 加速器物理基础 (北京: 北京大学出版社) 第136页

    Chen J E 2012 Fundamentals of Accelerator Physics (Beijing: Peking University Press) p136 (in Chinese)

  • 图 1  质子束满足水平或竖直方向成像传输条件时$\theta $$n$的变化曲线

    Fig. 1.  Variation curves of θ with n when the proton beams satisfies the imaging transmission conditions in the horizontal or vertical direction.

    图 2  质子束水平和竖直方向的像点位置相同时的传输. 浅黄色背景区域代表弱聚焦磁铁 (a) 交点1对应的质子束的传输包络; (b) 交点1对应的质子束在$X'Z'$平面的传输包络; (c) 交点2对应的质子束在$X'Z'$平面的传输包络; (d) 交点2对应的质子束的传输包络

    Fig. 2.  Transmission of the proton beams when the positions of the image points in the horizontal and vertical directions are the same. The light yellow background area represents the weak-focusing magnet: (a) The transmission envelope of the proton beam corresponding to crossing point 1; (b) the transmission envelope of the proton beam corresponding to crossing point 1 in the$X'Z'$plane; (c) the transmission envelope of the proton beam corresponding to crossing point 2 in the$X'Z'$plane; (d) the transmission envelope of the proton beam corresponding to crossing point 2.

    图 3  L1分别等于0.3 m(上)、0.7 m(中)和 L2(下)时, X方向质子束rms尺寸(左)、脉冲长度(中)和偏转角度(右)随L2rc的变化

    Fig. 3.  Variations of proton beam size (left), pulse length (middle) and deflection angle (right) with L2 and rc when L1 equals to 0.3 m (upper), 0.7 m (middle) and L2 (lower) respectively.

    图 4  质子束的传输束线设计 (a) 2%能散质子束的传输包络; (b) 2%能散质子束在$X'Z'$平面的传输包络与束线布局示意图; (c) Y方向磁场强度随半径的变化; (d) 2%能散质子束在束线出口的分布; (e) 不同能散质子束在束线出口的尺寸和脉冲长度

    Fig. 4.  Transmission beamline design for proton beams: (a) The transmission envelope of the proton beam with 2% energy spread; (b) the transmission envelope of the proton beam with 2% energy spread in the$X'Z'$plane and the schematic diagram of beamline layout; (c) Y-direction magnetic field strength as a function of radius; (d) distribution of proton beam with 2% energy spread at the beamline exit; (e) the sizes and pulse lengths of proton beams with different energy spread at the beamline exit.

    图 5  100和200 MeV质子束的传输束线设计 (a) 100 MeV质子束的传输包络; (b) 100 MeV质子束在$X'Z'$平面的传输包络; (c) 100 MeV质子束在束线出口的分布; (d) 200 MeV质子束的传输包络; (e) 200 MeV质子束在$X'Z'$平面的传输包络; (f) 200 MeV质子束在束线出口的分布

    Fig. 5.  Transmission beamline design for 100 and 200 MeV proton beams: (a) Transmission envelope of 100 MeV proton beams; (b) the transmission envelope of 100 MeV proton beams in the$X'Z'$plane; (c) distribution of 100 MeV proton beams at the beamline exit; (d) transmission envelope of 200 MeV proton beams; (e) the transmission envelope of 200 MeV proton beams in the$X'Z'$plane; (f) distribution of 200 MeV proton beams at the beamline exit.

    Baidu
  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Kim I J, Pae K H, Choi I W, Lee C L, Kim H T, Singhal H, Sung J H, Lee S K, Lee H W, Nickles P V, Jeong T M, Kim C M, Nam C H 2016 Phys. Plasmas 23 070701Google Scholar

    [3]

    Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724Google Scholar

    [4]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely RA 2001 Phys. Plasmas 8 542Google Scholar

    [5]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003Google Scholar

    [6]

    Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J, Fernández J C 2007 Phys. Plasmas 14 056706Google Scholar

    [7]

    Dromey B, Coughlan M, Senje L, Taylor M, Kuschel S, Villagomez-Bernabe B, Stefanuik R, Nersisyan G, Stella L, Kohanoff J, Borghesi M, Currell F, Riley D, Jung D, Wahlström C G, Lewis C L S, Zepf M 2016 Nat. Commun. 7 10642Google Scholar

    [8]

    Romagnani L, Fuchs J, Borghesi M, Antici P, Audebert P, Ceccherini F, Cowan T, Grismayer T, Kar S, MacChi A, Mora P, Pretzler G, Schiavi A, Toncian T, Willi O 2005 Phys. Rev. Lett. 95 195001Google Scholar

    [9]

    Nakamura T, Sakagami H, Johzaki T, Nagatomo H, Mima K, Koga J 2007 Phys. Plasmas 14 103105Google Scholar

    [10]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [11]

    Morrison J T, Feister S, Frische K D, Austin D R, Ngirmang G K, Murphy N R, Orban C, Chowdhury E A, Roquemore W M 2018 New J. Phys. 20 022001Google Scholar

    [12]

    Nishiuchi M, Daito I, Ikegami M, Daido H, Mori M, Orimo S, Ogura K, Sagisaka A, Yogo A, Pirozhkov A S, Sugiyama H, Kiriyama H, Okada H, Kanazawa S, Kondo S, Shimomura T, Tanoue M, Nakai Y, Sasao H, Wakai D, Sakaki H, Bolton P, Choi I W, Sung J H, Lee J, Oishi Y, Fujii T, Nemoto K, Souda H, Noda A, Iseki Y, Yoshiyuki T 2009 Appl. Phys. Lett. 94 61107Google Scholar

    [13]

    Schollmeier M, Becker S, Geißel M, Flippo K A, Blažević A, Gaillard S A, Gautier D C, Grüner F, Harres K, Kimmel M, others 2008 Phys. Rev. Lett. 101 55004Google Scholar

    [14]

    Pommarel L, Vauzour B, Mégnin-Chanet F, Bayart E, Delmas O, Goudjil F, Nauraye C, Letellier V, Pouzoulet F, Schillaci F, Romano F, Scuderi V, Cirrone G A P, Deutsch E, Flacco A, Malka V 2017 Phys. Rev. Accel. Beams 20 032801Google Scholar

    [15]

    Zhu J G, Wu M J, Zhu K, Geng Y X, Liao Q, Li D Y, Yang T, Easton M J, Li C C, Xu X H, Shou Y R, Yu J Q, Gong Z, Zhao Y Y, Wang P J, Wang D H, Tao L, Chen C E, Ma W J, Lu H Y, Tajima T, Mourou G, Lin C, Yan X Q 2020 Phys. Rev. Accel. Beams 23 121304Google Scholar

    [16]

    Zhu J G, Wu M J, Liao Q, Geng Y X, Zhu K, Li C C, Xu X H, Li D Y, Shou Y R, Yang T, Wang P J, Wang D H, Wang J J, Chen C E, He X T, Zhao Y Y, Ma W J, Lu H Y, Tajima T, Lin C, Yan X Q 2019 Phys. Rev. Accel. Beams 22 061302Google Scholar

    [17]

    Hofmann I, Meyer-ter-Vehn J, Yan X, Orzhekhovskaya A, Yaramyshev S 2011 Phys. Rev. Spec. Top. Accel. Beams 14 31304Google Scholar

    [18]

    Harres K, Alber I, Tauschwitz A, Bagnoud V, Daido H, Günther M, Nürnberg F, Otten A, Schollmeier M, Schütrumpf J, Tampo M, Roth M 2010 Phys. Plasmas 17 23107Google Scholar

    [19]

    Agosteo S, Anania M P, Caresana M, Cirrone G A P, Martinis C De, Side D D, Fazzi A, Gatti G, Giove D, Giulietti D, Gizzi L A, Labate L, Londrillo P, Maggiore M, Nassisi V, Sinigardi S, Tramontana A, Schillaci F, Scuderi V, Turchetti G, Varoli V, Velardi L 2014 Nucl. Inst. Methods Phys. Res. B 331 15Google Scholar

    [20]

    Burris-Mog T, Harres K, Nürnberg F, Busold S, Bussmann M, Deppert O, Hoffmeister G, Joost M, Sobiella M, Tauschwitz A, Zielbauer B, Bagnoud V, Herrmannsdoerfer T, Roth M, Cowan T E 2011 Phys. Rev. Spec. Top. Accel. Beams 14 121301Google Scholar

    [21]

    Roth M, Alber I, Bagnoud V, Brown C R D, Clarke R, Daido H, Fernandez J, Flippo K, Gaillard S, Gauthier C, et al. 2009 Plasma Phys. Controlled Fusion 51 124039Google Scholar

    [22]

    Hofmann I, Meyer-Ter-Vehn J, Yan X, Al-Omari H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. A 681 44Google Scholar

    [23]

    Milluzzo G, Pipek J, Amico A G, Cirrone G A P, Cuttone G, Korn G, Larosa G, Leanza R, Margarone D, Petringa G, Russo A, Schillaci F, Scuderi V, Romano F 2018 Nucl. Instrum. Methods Phys. Res. , Sect. A 909 298Google Scholar

    [24]

    Qi F F, Ma Z R, Zhao L R, Cheng Y, Jiang W X, Lu C, Jiang T, Qian D, Wang Z, Zhang W T, Zhu P F, Zou X, Wan W S, Xiang D, Zhang J 2020 Phys. Rev. Lett. 124 134803Google Scholar

    [25]

    Scisciò M, Lancia L, Migliorati M, Mostacci A, Palumbo L, Papaphilippou Y, Antici P 2016 J. Appl. Phys. 119 535

    [26]

    陈佳洱 2012 加速器物理基础 (北京: 北京大学出版社) 第136页

    Chen J E 2012 Fundamentals of Accelerator Physics (Beijing: Peking University Press) p136 (in Chinese)

  • [1] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [2] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型.  , 2022, 71(11): 115201. doi: 10.7498/aps.70.20212269
    [3] 吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新. 超强激光驱动的辐射反作用力效应与极化粒子加速.  , 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [4] 张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋. 相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究.  , 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [5] 贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋. 基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究.  , 2018, 67(22): 225202. doi: 10.7498/aps.67.20181504
    [6] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案.  , 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [7] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术.  , 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [8] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应.  , 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [9] 裴敏洁, 齐大龙, 齐迎朋, 贾天卿, 张诗按, 孙真荣. 超快电子衍射技术及其应用.  , 2015, 64(3): 034101. doi: 10.7498/aps.64.034101
    [10] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束.  , 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [11] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究.  , 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [12] 吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉. 强激光与锥型结构靶相互作用准直电子束粒子模拟研究.  , 2014, 63(9): 094101. doi: 10.7498/aps.63.094101
    [13] 滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋. 激光加速质子束对电磁孤立子的照相模拟研究.  , 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [14] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究.  , 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [15] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验.  , 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [16] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案.  , 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [17] 华剑飞, 霍裕昆, 林郁正, 陈 钊, 谢永杰, 张绍银, 阎 峥, 徐俊杰. 电子在超短激光脉冲修正场中的动力学特性研究.  , 2005, 54(2): 653-657. doi: 10.7498/aps.54.653
    [18] 徐 涵, 常文蔚, 银 燕, 卓红斌. 三角激光脉冲尾波加速粒子模拟.  , 2004, 53(3): 818-823. doi: 10.7498/aps.53.818
    [19] 谷云鹏, 马腾才. 粒子束对玻姆鞘层判据的影响.  , 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
    [20] 田人和. 相对论性带电粒子束在轴对称电场和磁场中的温度和能量展宽.  , 1993, 42(5): 750-756. doi: 10.7498/aps.42.750
计量
  • 文章访问数:  3828
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-05-02
  • 上网日期:  2022-10-12
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map