搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量

孟凡昊 秦敏 方武 段俊 唐科 张鹤露 邵豆 廖知堂 谢品华

引用本文:
Citation:

基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量

孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华

Measurements of atmospheric HONO and NO2 utilizing an open-path broadband cavity enhanced absorption spectroscopy based on an iterative algorithm

Meng Fan-Hao, Qin Min, Fang Wu, Duan Jun, Tang Ke, Zhang He-Lu, Shao Dou, Liao Zhi-Tang, Xie Pin-Hua
PDF
HTML
导出引用
  • 气态亚硝酸(HONO)作为羟基(OH)自由基的重要前体物, 在大气中浓度低、寿命短、易损耗且活性强, 针对大气HONO的高灵敏度测量具有一定的挑战. 本文介绍了基于迭代算法的开放光路宽带腔增强吸收光谱(OP-BBCEAS)技术应用于大气HONO和NO2的测量. 常规BBCEAS技术通过将经滤膜过滤后的环境空气由泵压入/抽入光学腔内进行测量, 尽管可以减小气溶胶消光对测量的影响, 但针对一些活性组分的测量则需要考虑光学腔和采样造成的吸附损耗和二次生成等壁效应. 本文采用OP-BBCEAS技术, 开放光路的测量模式避免了上述壁效应的影响, 基于迭代反演算法通过多次迭代确定有效吸收光程, 然后采用差分光学吸收光谱的光谱拟合方法对光谱中HONO和NO2的吸收进行定量, 克服了气溶胶颗粒Mie散射消光和光源波动的宽带变化影响. 在轻度(PM2.5 < 75 μg/m3)和中度(PM2.5 > 75 μg/m3)不同气溶胶污染状况下测量了实际大气HONO和NO2浓度, 并同时与常规封闭腔BBCEAS系统开展了测量对比. 不同PM2.5污染程度下两台BBCEAS系统测量的HONO和NO2浓度均显著性相关(R2>0.99), HONO和NO2浓度的测量差异(HONO ≤ 4.0%, NO2 ≤ 6.5%)均小于系统测量误差(HONO: 8.1%, NO2: 7.5%), 验证了迭代反演算法应用于OP-BBCEAS系统实际大气测量的可行性.
    Nitrous acid (HONO), as an important precursor of hydroxyl (OH) radical, has a low concentration, short lifetime, easy loss and high reactivity in the atmosphere. Thus, the high sensitivity detection of atmospheric HONO is a challenge. In this paper, we report an open-path broadband cavity enhanced absorption spectroscopy (OP-BBCEAS) system based on the iterative algorithm for simultaneous measurement of atmospheric HONO and NO2. In the conventional BBCEAS system, a pump is used to drive the ambient air into the optical cavity through the filter membrane for measurement, which can reduce the influence of aerosol particle extinction. However, the influence of wall loss and secondary formation caused by the optical cavity and sampling should be considered for reactive component measurements. The OP-BBCEAS with open-path configuration is adopted in this paper to avoid being influenced by wall effect. The effective absorption optical path is calculated by the iterative retrieval algorithm through multiple iterations, and the absorption of HONO and NO2 are then quantified by the spectral fitting method of differential optical absorption spectroscopy, which removes the broadband change influence of the Mie scattering extinction by aerosol particles and the light intensity fluctuation. The atmospheric HONO and NO2 with light (PM2.5 < 75 μg/m3) and moderate (PM2.5 > 75 μg/m3) aerosol loading are measured by the OP-BBCEAS system based on iterative algorithm, and compared with the counterparts by the conventional close-path BBCEAS system. The concentrations of HONO and NO2 measured by the two BBCEAS systems are in good agreement (R2 > 0.99) for different PM2.5 concentration levels, and the measurement differences of HONO and NO2 concentrations (HONO ≤ 4.0%, NO2 ≤ 6.5%) are less than the systematic measurement errors (HONO: 8.1%, NO2: 7.5%), which verifies the feasibility of iterative algorithm applied to OP-BBCEAS system for atmospheric measurement.
      通信作者: 秦敏, mqin@aiofm.ac.cn ; 方武, wfang@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41875154, 42175151, U21A2028)和安徽省重点研究与开发计划(批准号: 202104i07020010)资助的课题
      Corresponding author: Qin Min, mqin@aiofm.ac.cn ; Fang Wu, wfang@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41875154, 42175151, U21A2028) and the Anhui Provincial Key R&D Program, China (Grant No. 202104i07020010)
    [1]

    Elshorbany Y F, Kurtenbach R, Wiesen P, Lissi E, Rubio M, Villena G, Gramsch E, Rickard A R, Pilling M J, Kleffmann J 2009 Atmos. Chem. Phys. 9 2257Google Scholar

    [2]

    Kleffmann J 2007 Chemphyschem 8 1137Google Scholar

    [3]

    Perner D, Platt U 1979 Geophys. Res. Lett. 6 917Google Scholar

    [4]

    Legrand M, Preunkert S, Frey M, Bartels-Rausch T, Jourdain B 2014 Atmos. Chem. Phys. 14 9963Google Scholar

    [5]

    Cui X, Yu R, Chen W, Zhang Z, Pang T, Sun P, Xia H, Wu B, Dong F 2019 J. Lightwave Technol. 37 2784Google Scholar

    [6]

    Wang L, Zhang J 2000 Environ. Sci. Technol. 34 4221Google Scholar

    [7]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284Google Scholar

    [8]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2008 Environ. Sci. Technol. 42 890Google Scholar

    [9]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544Google Scholar

    [10]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2016 Atmos. Meas. Tech. 9 423Google Scholar

    [11]

    Duan J, Qin M, Ouyang B, et al. 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [12]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Meas. Tech. 7 199Google Scholar

    [13]

    Johansson O, Mutelle H, Alexander E P, et al. 2014 Appl. Phys. B-Lasers O. 114 421Google Scholar

    [14]

    Liang S, Qin M, Xie P, et al. 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [15]

    Wang H, Chen J, Lu K 2017 Atmos. Meas. Tech. 10 1465Google Scholar

    [16]

    Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar

    [17]

    Dorn H P, Apodaca R L, Ball S M, et al. 2013 Atmos. Meas. Tech. 6 1111Google Scholar

    [18]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758Google Scholar

    [19]

    Chen J, Wenger J C, Venables D S 2011 J. Phys. Chem. A 115 12235Google Scholar

    [20]

    Varma R M, Venables D S, Ruth A A, Heitmann U, Schlosser E, Dixneuf S 2009 Appl. Opt. 48 159Google Scholar

    [21]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2012 Appl. Phys. B-Lasers O. 106 501Google Scholar

    [22]

    Suhail K, George M, Chandran S, Varma R, Venables D S, Wang M, Chen J 2019 Spectrochim. Acta A 208 24Google Scholar

    [23]

    Horbanski M, Pöhler D, Lampel J, Platt U 2019 Atmos. Meas. Tech. 12 3365Google Scholar

    [24]

    Tang K, Qin M, Fang W, et al. 2020 Atmos. Meas. Tech. 13 6487Google Scholar

    [25]

    Stutz J, Kim E S, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res. Atmos. 105 14585Google Scholar

    [26]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A-Chem. 149 1Google Scholar

    [27]

    Greenblatt G D, Orlando J J, Burkholder J B, Ravishankara A R 1990 J. Geophys. Res. 95 18577Google Scholar

    [28]

    Moosmüller H, Varma R, Arnott W P 2005 Aerosol Sci. Tech. 39 30Google Scholar

    [29]

    Platt U, Meinen J, Pöhler D, Leisner T 2009 Atmos. Meas. Tech. 2 713Google Scholar

  • 图 1  OP-BBCEAS系统示意图

    Fig. 1.  Schematic diagram of the OP-BBCEAS instrument setup.

    图 2  氮气(N2)谱(黑色)、氦气(He)谱(红色)和镜面反射率曲线(蓝色)

    Fig. 2.  Nitrogen (N2) spectrum (black line), helium (He) spectrum (red line) and the derived curve of mirror reflectivity (blue line).

    图 3  环境空气中气溶胶颗粒Mie散射对透射光谱强度和有效吸收光程的影响 (a)气溶胶颗粒Mie散射对透射光谱强度的影响; (b)气溶胶颗粒Mie散射对有效吸收光程的影响

    Fig. 3.  Influence of Mie scattering of aerosol particles in ambient air on transmission spectral intensity and effective absorption optical path: (a) Influence of Mie scattering of aerosol particles on transmission spectral intensity; (b) influence of Mie scattering of aerosol particles on effective absorption optical path.

    图 4  基于迭代反演的OP-BBCEAS算法和常规BBCEAS反演算法存在气溶胶消光影响时的大气HONO和NO2反演实例 (a)基于迭代反演的OP-BBCEAS算法存在气溶胶消光影响时的光谱拟合结果, 拟合残差的标准偏差为1.75 × 10–4; (b)常规BBCEAS反演算法存在气溶胶消光影响时的光谱拟合结果, 拟合残差的标准偏差为7.10 × 10–9 cm–1

    Fig. 4.  Examples of HONO and NO2 retrieval of iterative retrieval algorithm and conventional retrieval algorithm with the influence of aerosol extinction: (a) Spectral fitting results of iterative retrieval algorithm with the influence aerosol extinction, the standard deviation of fit residual is 1.75 ×10–4; (b) spectral fitting results of conventional retrieval algorithm with the influence aerosol extinction, the standard deviation of fit residual is 7.10 × 10–9 cm–1.

    图 5  原始镜面反射率曲线(黑色)和实际大气测量后镜面反射率曲线(红色)

    Fig. 5.  Initial mirror reflectivity curve (black line) and mirror reflectivity curve after the atmospheric measurements (red line).

    图 6  基于迭代算法的 OP-BBCEAS系统和常规封闭腔BBCEAS系统测量不同PM2.5浓度(小时均值)下HONO和NO2浓度时间序列, 红色点线为OP-BBCEAS系统测量结果, 黑色点线为封闭腔BBCEAS系统测量结果

    Fig. 6.  Time series of HONO and NO2 concentrations measured by OP-BBCEAS system based on iterative algorithm and conventional close-path BBCEAS system at different hourly average PM2.5 concentrations. The red dotted line is the measurements of open-path BBCEAS system, and the black dotted line is the measurements of close-path BBCEAS system.

    图 7  基于迭代算法的OP-BBCEAS系统和常规封闭腔BBCEAS系统在不同PM2.5浓度下测量HONO和NO2浓度的相关性 (a)轻度(PM2.5<75 μg/m3)和中度(PM2.5>75 μg/m3)气溶胶污染状况下两台BBCEAS系统测量HONO浓度的相关性; (b)轻度(PM2.5<75 μg/m3)和中度(PM2.5>75 μg/m3)气溶胶污染状况下两台BBCEAS系统测量NO2浓度的相关性

    Fig. 7.  Correlation of HONO and NO2 concentrations measured by OP-BBCEAS system based on iterative algorithm and conventional close-path BBCEAS system at different PM2.5 concentrations: (a) The correlation between HONO concentration measured by two BBCEAS instruments in light (PM2.5<75 μg/m3) and moderate (PM2.5>75 μg/m3) aerosol loading; (b) the correlation between NO2 measured by two BBCEAS instruments in light (PM2.5<75 μg/m3) and moderate (PM2.5>75 μg/m3) aerosol loading.

    Baidu
  • [1]

    Elshorbany Y F, Kurtenbach R, Wiesen P, Lissi E, Rubio M, Villena G, Gramsch E, Rickard A R, Pilling M J, Kleffmann J 2009 Atmos. Chem. Phys. 9 2257Google Scholar

    [2]

    Kleffmann J 2007 Chemphyschem 8 1137Google Scholar

    [3]

    Perner D, Platt U 1979 Geophys. Res. Lett. 6 917Google Scholar

    [4]

    Legrand M, Preunkert S, Frey M, Bartels-Rausch T, Jourdain B 2014 Atmos. Chem. Phys. 14 9963Google Scholar

    [5]

    Cui X, Yu R, Chen W, Zhang Z, Pang T, Sun P, Xia H, Wu B, Dong F 2019 J. Lightwave Technol. 37 2784Google Scholar

    [6]

    Wang L, Zhang J 2000 Environ. Sci. Technol. 34 4221Google Scholar

    [7]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 284Google Scholar

    [8]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2008 Environ. Sci. Technol. 42 890Google Scholar

    [9]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544Google Scholar

    [10]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2016 Atmos. Meas. Tech. 9 423Google Scholar

    [11]

    Duan J, Qin M, Ouyang B, et al. 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [12]

    Hoch D J, Buxmann J, Sihler H, Pöhler D, Zetzsch C, Platt U 2014 Atmos. Meas. Tech. 7 199Google Scholar

    [13]

    Johansson O, Mutelle H, Alexander E P, et al. 2014 Appl. Phys. B-Lasers O. 114 421Google Scholar

    [14]

    Liang S, Qin M, Xie P, et al. 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [15]

    Wang H, Chen J, Lu K 2017 Atmos. Meas. Tech. 10 1465Google Scholar

    [16]

    Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar

    [17]

    Dorn H P, Apodaca R L, Ball S M, et al. 2013 Atmos. Meas. Tech. 6 1111Google Scholar

    [18]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758Google Scholar

    [19]

    Chen J, Wenger J C, Venables D S 2011 J. Phys. Chem. A 115 12235Google Scholar

    [20]

    Varma R M, Venables D S, Ruth A A, Heitmann U, Schlosser E, Dixneuf S 2009 Appl. Opt. 48 159Google Scholar

    [21]

    Wu T, Chen W, Fertein E, Cazier F, Dewaele D, Gao X 2012 Appl. Phys. B-Lasers O. 106 501Google Scholar

    [22]

    Suhail K, George M, Chandran S, Varma R, Venables D S, Wang M, Chen J 2019 Spectrochim. Acta A 208 24Google Scholar

    [23]

    Horbanski M, Pöhler D, Lampel J, Platt U 2019 Atmos. Meas. Tech. 12 3365Google Scholar

    [24]

    Tang K, Qin M, Fang W, et al. 2020 Atmos. Meas. Tech. 13 6487Google Scholar

    [25]

    Stutz J, Kim E S, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res. Atmos. 105 14585Google Scholar

    [26]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A-Chem. 149 1Google Scholar

    [27]

    Greenblatt G D, Orlando J J, Burkholder J B, Ravishankara A R 1990 J. Geophys. Res. 95 18577Google Scholar

    [28]

    Moosmüller H, Varma R, Arnott W P 2005 Aerosol Sci. Tech. 39 30Google Scholar

    [29]

    Platt U, Meinen J, Pöhler D, Leisner T 2009 Atmos. Meas. Tech. 2 713Google Scholar

  • [1] 张鹤露, 秦敏, 方武, 唐科, 段俊, 孟凡昊, 邵豆, 华卉, 廖知堂, 谢品华. 基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究.  , 2021, 70(15): 150702. doi: 10.7498/aps.70.20210312
    [2] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量.  , 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [3] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像.  , 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [4] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究.  , 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [5] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法.  , 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [6] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量.  , 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [7] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究.  , 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [8] 王东, 马迎军, 刘泉, 史祎诗. 可见光域多波长叠层衍射成像的实验研究.  , 2015, 64(8): 084203. doi: 10.7498/aps.64.084203
    [9] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线.  , 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [10] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验.  , 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [11] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像.  , 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [12] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法.  , 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [13] 孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴. 差分吸收光谱技术在工业污染源烟气排放监测中的应用.  , 2013, 62(1): 010701. doi: 10.7498/aps.62.010701
    [14] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2.  , 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [15] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量.  , 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [16] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定.  , 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [17] 司福祺, 刘建国, 谢品华, 张玉钧, 李 昂, 秦 敏, 李玉金, 窦 科, 李素文, 刘文清. 光纤模式混合器在差分吸收光谱系统中的应用研究.  , 2007, 56(3): 1825-1830. doi: 10.7498/aps.56.1825
    [18] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数.  , 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [19] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布.  , 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [20] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究.  , 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
计量
  • 文章访问数:  4438
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-02-23
  • 上网日期:  2022-06-13
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map