搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维纳米限域物质的结构

常静 陈基

引用本文:
Citation:

一维纳米限域物质的结构

常静, 陈基

One-dimensional structures in nanoconfinement

Chang Jing, Chen Ji
PDF
HTML
导出引用
  • 低维材料的结构探索是我们全面认识元素物态的关键. 近年来, 研究方法的发展使包括一维原子链在内的各种低维结构逐渐被报道. 根据一维限域材料的发展现状, 本文重点对直径1 nm以下单质材料的结构和物理性质进行了综述, 并简要总结了此类研究中常用的实验技术和理论方法. 希望通过材料结构特性的解读和研究方法的讨论, 说明目前理论计算层面存在的困难及需要面临的挑战, 并以此对一维限域材料的研究前景进行展望.
    Exploring the structure of low-dimensional materials is a key step towards a complete understanding of condensed matter. In recent years, owing to the fast developing of research tools, novel structures of many elements have been reported, revealing the possibility of new properties. Refining the investigation of one-dimensional atomic chain structures has thus received a great amount of attention in the field of condensed matter physics, materials science and chemistry. In this paper, we review the recent advances in the study of confined structures under nanometer environments. We mainly discuss the most interesting structures revealed and the experimental and theoretical methods adopted in these researches, and we also briefly discuss the properties related to the new structures. We particularly focus on elemental materials, which show the richness of one-dimensional structures in vacuum and in nanoconfinement. By understanding the binding and stability of various structures and their properties, we expect that one-dimensional materials should attract a broad range of interest in new materials discovery and new applications. Moreover, we reveal the challenges in accurate theoretical simulations of one-dimensional materials in nanoconfinement, and we provide an outlook of how to overcome such challenges in the future.
      通信作者: 陈基, ji.chen@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974024)资助的课题.
      Corresponding author: Chen Ji, ji.chen@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974024).
    [1]

    Zhu C Q, Gao Y R, Zhu W D, Liu Y, Francisco J S, Zeng X C 2020 J. Phys. Chem. Lett. 11 7449Google Scholar

    [2]

    Georgakilas V, Perman J A, Tucek J, Zboril R 2015 Chem. Rev. 115 4744Google Scholar

    [3]

    De Volder M F L, Tawfick S H, Baughman R H, Hart A 2013 Science 339 535Google Scholar

    [4]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [5]

    Charlier J C, Blase X, Roche S 2007 Rev. Mod. Phys. 79 677Google Scholar

    [6]

    Pitzer K S, Clementi E 1959 J. Am. Chem. Soc. 81 4477Google Scholar

    [7]

    Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A 2002 Chem. Eur. J. 8 408Google Scholar

    [8]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967Google Scholar

    [9]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala1 P, Pichler T 2016 Nat. Mater. 15 634Google Scholar

    [10]

    Yao Z, Liu C J, Li Y, Jing X D, Meng F S, Zheng S P, Zhao X, Li J H, Qiu Z Y, Yuan Y, Wang W X, Bi L, Liu H, Zhang Y P, Liu B B 2016 Chin. Phys. B 25 096105Google Scholar

    [11]

    Fan L L, Yang D R, Li D S 2021 Materials 14 3964Google Scholar

    [12]

    Luo K, Zhao Z S, Ma M D, Zhang S S, Yuan X H, Gao G Y, Zhou X F, He J L, Yu D L, Liu Z G, Xu B, Tian Y J 2016 Chem. Mater. 28 6441Google Scholar

    [13]

    Sung H J, Han W H, Lee I H, Chang K J 2018 Phys. Rev. Lett. 120 157001Google Scholar

    [14]

    Huang W Q, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 J. Appl. Phys. 128 215108Google Scholar

    [15]

    Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C 2003 Chem. Phys. Lett. 379 155Google Scholar

    [16]

    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nat. Nanotechnol. 7 310Google Scholar

    [17]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [18]

    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [19]

    Olijnyk H, Sikka S K, Holzapfel W B 1984 Phys. Lett. A 103 137Google Scholar

    [20]

    Khokhlov A F, Mashin A I, Khokhlov D A 1998 JETP Lett. 67 675Google Scholar

    [21]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar

    [22]

    Liu M J, Artyukhov V I, Yakobson B I 2017 J. Am. Chem. Soc. 139 2111Google Scholar

    [23]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [24]

    Abou-Rachid H, Hu A G, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar

    [25]

    Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L S 2009 Appl. Phys. Lett. 95 021904Google Scholar

    [26]

    Li Y L, Bai H C, Lin F X, Huang Y H 2018 Physica E 103 444Google Scholar

    [27]

    Kramberger C, Thurakitseree T, Koh H, Izumi Y, Kinoshita T, Muro T, Einarsson E, Maruyama S 2013 Carbon 55 196Google Scholar

    [28]

    Hart M, White E R, Chen J, McGilvery C M, Pickard C J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2017 Angew. Chem. Int. Ed. 56 8144Google Scholar

    [29]

    Zhang J Y, Fu C C, Song S X, Du H C, Zhao D, Huang H Y, Zhang L H, Guan J, Zhang Y F, Zhao X L, Ma C S, Jia C L, Tománek D 2020 Nano Lett. 20 1280Google Scholar

    [30]

    Deringer V L, Pickard C J, Proserpio D M. 2020 Angew. Chem. Int. Ed. 59 15880Google Scholar

    [31]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2018 Angew. Chem. Int. Ed. 57 11649Google Scholar

    [32]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2019 Inorg. Chem. 58 15216Google Scholar

    [33]

    Kitaura R, Kitagawa S, Kubota Y, Kobayashi Tatsuo C, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang H C, Ozawa T C, Suzuki M, Sakata M, Masaki T 2002 Science 298 2358Google Scholar

    [34]

    Hanami K, Umesaki T, Matsuda K, Miyata Y, Kataura H, Okabe Y, Maniwa Y 2010 J. Phys. Soc. Jpn. 79 023601Google Scholar

    [35]

    Hagiwara M, Ikeda M, Kida T, Matsuda K, Tadera S, Kyakuno H, Yanagi K, Maniwa Y, Okunishi K 2014 J. Phys. Soc. Jpn. 83 113706Google Scholar

    [36]

    Massote D V P, Mazzoni M S C 2014 J. Phys. Chem. C 118 24741Google Scholar

    [37]

    Ji X L, Lee K T, Nazar L F 2009 Nat. Mater. 8 500Google Scholar

    [38]

    Springborg M, Jones R O 1986 Phys. Rev. Lett. 57 1145Google Scholar

    [39]

    Fujimori T, Morelos A, Zhu Z, Muramatsu H, Futamura1 R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, ChoI Y C, Tomanek D, Kaneko Katsumi 2013 Nat. Commun. 4 2162Google Scholar

    [40]

    Chancolon J, Archaimbault F, Bonnamy S, Traverse A, Olivi L, Vlaic G 2006 J. Non-Cryst. Solids 352 99Google Scholar

    [41]

    Fujimori T, dos Santos R B, Hayashi T, Endo M, Kaneko K, Tománek D 2013 ACS Nano 7 5607Google Scholar

    [42]

    Grigorian L, Williams K A, Fang S, Sumanasekera G U, Loper A L, Dickey E C, Pennycook S J, Eklund P C 1998 Phys. Rev. Lett. 80 5560Google Scholar

    [43]

    Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T, Pennycook S J 2000 Phys. Rev. Lett. 84 4621Google Scholar

    [44]

    Guan L H, Suenaga K, Shi Z J, Gu Z N, Iijima S 2007 Nano Lett. 7 1532Google Scholar

    [45]

    Komsa H P, Senga R, Suenaga K, Krasheninnikov A V 2017 Nano Lett. 17 3694Google Scholar

  • 图 1  碳元素一维结构示意图 (a) C元素一维卡宾直链; (b) C元素一维螺旋链. 左侧为径向视角, 右侧为接近轴向的视角

    Fig. 1.  Schematic diagram of one-dimensional structures of carbon: (a) Carbyne chain; (b) carbon helical chain. Left and right panels are radial and axial view.

    图 2  磷元素一维同素异形体链结构示意图. 其中第一行括号中D代表纳米管的直径, 不同一维限域磷结构稳定存在于相应的区间[28]

    Fig. 2.  Structures of one-dimensional phosphorus. The D values in the bracket of the first row indicate the widths of carbon nanotube where the corresponding confined one-dimensional phosphorus are stable[28].

    图 3  碳纳米管中一维P((a)—(c))和As((d)—(f))链结构高分辨率透射电子显微镜图像及其相应的结构示意图[32]. 每幅图显示了实验图像(左)、模拟图像(中)以及相应原子模型(右). 结构包括P4/As4结构((a)和(d))、锯齿梯形结构((b)和(e)), 以及锯齿单链结构((c)和(f))

    Fig. 3.  High resolution transmission electron microscopy (HRTEM) imaging and structure models for one-dimensional phosphorus ((a)–(c)) and arsenic ((d)–(f)) in carbon nanotube[32]. In each panel, from left to right is experimental image, simulated image and structure model, respectively. The structures include the tetrahedral molecular structure ((a), (d)), the zigzag ladder structure ((b), (e)) and the single zigzag chain structure ((c), (f)).

    图 4  O元素(a)和S元素(b)的典型一维同素异形体链结构示意图[34] (a) 从上到下分别是长方体笼型O8链、交叉梯形结构和锯齿梯形结构; (b) 从上往下依次是单链结构、双链结构和锯齿单链结构

    Fig. 4.  One-dimensional allotropes of oxygen (a) and sulfur (b) [34]: (a) It shows a O8 chain, an alternating ladder structure and a zigzag ladder structure from top to bottom; (b) It shows a single chain, a double chain and a zigzag chain structure from top to bottom.

    图 5  (a) 单臂碳纳米管中一维直线型硫链的高分辨透射电子显微镜图像[39]; (b) 单臂碳纳米管中锯齿型硫链结构的高分辨透射电子显微镜图像[39]; (c) 双臂碳纳米管中的一维线性链的高分辨透射电子显微镜图像[39]; (d) 图(a)—(c)中结构对应的X射线衍射谱[39]

    Fig. 5.  (a) HRTEM images of one-dimensional linear sulfur chain in single-wall carbon nanotube (CNT) [39]; (b) HRTEM images of the zigzag sulfur chain in single-wall CNT[39]; (c) HRTEM images of linear sulfur chain in double-wall CNT[39]; (d) X-ray diffraction curves of structures in panels (a)–(c)[39].

    图 6  用单壁碳纳米管封装的碘原子链的高分辨电子显微镜图像[44] (a) 直径(1.05 ± 0.05) nm单壁碳纳米管中的单螺旋碘链结构; (b) 直径(1.30 ± 0.05) nm单壁碳纳米管中的双螺旋碘链结构; (c) 直径(1.40 ± 0.05) nm单壁碳纳米管中的三螺旋碘链结构图

    Fig. 6.  HRTEM images of one-dimensional iodine chain in single-wall CNT[44]: (a) Single helical iodine structure in CNT with diameter of (1.05 ± 0.05) nm; (b) double helical iodine structure in CNT with diameter of (1.35 ± 0.05) nm; (c) triple helical iodine structure in CNT with diameter of (1.45 ± 0.05) nm.

    Baidu
  • [1]

    Zhu C Q, Gao Y R, Zhu W D, Liu Y, Francisco J S, Zeng X C 2020 J. Phys. Chem. Lett. 11 7449Google Scholar

    [2]

    Georgakilas V, Perman J A, Tucek J, Zboril R 2015 Chem. Rev. 115 4744Google Scholar

    [3]

    De Volder M F L, Tawfick S H, Baughman R H, Hart A 2013 Science 339 535Google Scholar

    [4]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [5]

    Charlier J C, Blase X, Roche S 2007 Rev. Mod. Phys. 79 677Google Scholar

    [6]

    Pitzer K S, Clementi E 1959 J. Am. Chem. Soc. 81 4477Google Scholar

    [7]

    Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A 2002 Chem. Eur. J. 8 408Google Scholar

    [8]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967Google Scholar

    [9]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala1 P, Pichler T 2016 Nat. Mater. 15 634Google Scholar

    [10]

    Yao Z, Liu C J, Li Y, Jing X D, Meng F S, Zheng S P, Zhao X, Li J H, Qiu Z Y, Yuan Y, Wang W X, Bi L, Liu H, Zhang Y P, Liu B B 2016 Chin. Phys. B 25 096105Google Scholar

    [11]

    Fan L L, Yang D R, Li D S 2021 Materials 14 3964Google Scholar

    [12]

    Luo K, Zhao Z S, Ma M D, Zhang S S, Yuan X H, Gao G Y, Zhou X F, He J L, Yu D L, Liu Z G, Xu B, Tian Y J 2016 Chem. Mater. 28 6441Google Scholar

    [13]

    Sung H J, Han W H, Lee I H, Chang K J 2018 Phys. Rev. Lett. 120 157001Google Scholar

    [14]

    Huang W Q, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 J. Appl. Phys. 128 215108Google Scholar

    [15]

    Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C 2003 Chem. Phys. Lett. 379 155Google Scholar

    [16]

    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nat. Nanotechnol. 7 310Google Scholar

    [17]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [18]

    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [19]

    Olijnyk H, Sikka S K, Holzapfel W B 1984 Phys. Lett. A 103 137Google Scholar

    [20]

    Khokhlov A F, Mashin A I, Khokhlov D A 1998 JETP Lett. 67 675Google Scholar

    [21]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar

    [22]

    Liu M J, Artyukhov V I, Yakobson B I 2017 J. Am. Chem. Soc. 139 2111Google Scholar

    [23]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [24]

    Abou-Rachid H, Hu A G, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar

    [25]

    Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L S 2009 Appl. Phys. Lett. 95 021904Google Scholar

    [26]

    Li Y L, Bai H C, Lin F X, Huang Y H 2018 Physica E 103 444Google Scholar

    [27]

    Kramberger C, Thurakitseree T, Koh H, Izumi Y, Kinoshita T, Muro T, Einarsson E, Maruyama S 2013 Carbon 55 196Google Scholar

    [28]

    Hart M, White E R, Chen J, McGilvery C M, Pickard C J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2017 Angew. Chem. Int. Ed. 56 8144Google Scholar

    [29]

    Zhang J Y, Fu C C, Song S X, Du H C, Zhao D, Huang H Y, Zhang L H, Guan J, Zhang Y F, Zhao X L, Ma C S, Jia C L, Tománek D 2020 Nano Lett. 20 1280Google Scholar

    [30]

    Deringer V L, Pickard C J, Proserpio D M. 2020 Angew. Chem. Int. Ed. 59 15880Google Scholar

    [31]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2018 Angew. Chem. Int. Ed. 57 11649Google Scholar

    [32]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2019 Inorg. Chem. 58 15216Google Scholar

    [33]

    Kitaura R, Kitagawa S, Kubota Y, Kobayashi Tatsuo C, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang H C, Ozawa T C, Suzuki M, Sakata M, Masaki T 2002 Science 298 2358Google Scholar

    [34]

    Hanami K, Umesaki T, Matsuda K, Miyata Y, Kataura H, Okabe Y, Maniwa Y 2010 J. Phys. Soc. Jpn. 79 023601Google Scholar

    [35]

    Hagiwara M, Ikeda M, Kida T, Matsuda K, Tadera S, Kyakuno H, Yanagi K, Maniwa Y, Okunishi K 2014 J. Phys. Soc. Jpn. 83 113706Google Scholar

    [36]

    Massote D V P, Mazzoni M S C 2014 J. Phys. Chem. C 118 24741Google Scholar

    [37]

    Ji X L, Lee K T, Nazar L F 2009 Nat. Mater. 8 500Google Scholar

    [38]

    Springborg M, Jones R O 1986 Phys. Rev. Lett. 57 1145Google Scholar

    [39]

    Fujimori T, Morelos A, Zhu Z, Muramatsu H, Futamura1 R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, ChoI Y C, Tomanek D, Kaneko Katsumi 2013 Nat. Commun. 4 2162Google Scholar

    [40]

    Chancolon J, Archaimbault F, Bonnamy S, Traverse A, Olivi L, Vlaic G 2006 J. Non-Cryst. Solids 352 99Google Scholar

    [41]

    Fujimori T, dos Santos R B, Hayashi T, Endo M, Kaneko K, Tománek D 2013 ACS Nano 7 5607Google Scholar

    [42]

    Grigorian L, Williams K A, Fang S, Sumanasekera G U, Loper A L, Dickey E C, Pennycook S J, Eklund P C 1998 Phys. Rev. Lett. 80 5560Google Scholar

    [43]

    Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T, Pennycook S J 2000 Phys. Rev. Lett. 84 4621Google Scholar

    [44]

    Guan L H, Suenaga K, Shi Z J, Gu Z N, Iijima S 2007 Nano Lett. 7 1532Google Scholar

    [45]

    Komsa H P, Senga R, Suenaga K, Krasheninnikov A V 2017 Nano Lett. 17 3694Google Scholar

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性.  , 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能.  , 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [3] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响.  , 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [4] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟.  , 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [5] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性.  , 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [6] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [7] 陈修国, 袁奎, 杜卫超, 陈军, 江浩, 张传维, 刘世元. 基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量.  , 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [8] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究.  , 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [9] 刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒. 纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究.  , 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [10] 高翔, 陈晓波, 黎军, 李家明. 价键优选法及其在纳米结构预测与物性研究中的应用.  , 2013, 62(9): 093601. doi: 10.7498/aps.62.093601
    [11] 韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究.  , 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [12] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征.  , 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [13] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制.  , 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [14] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究.  , 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [15] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究.  , 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [16] 李爱华, 张凯旺, 孟利军, 李 俊, 刘文亮, 钟建新. 基于graphene条带的硅纳米结构.  , 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [17] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响.  , 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [18] 杨红官, 施毅, 闾锦, 濮林, 张荣, 郑有. 锗/硅异质纳米结构中空穴存储特性研究.  , 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
    [19] 张洪涛, 徐重阳, 邹雪城, 王长安, 赵伯芳, 周雪梅, 曾祥斌. 4H-SiC纳米薄膜的微结构及其光电性质研究.  , 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [20] 都有为, 陈鹏, 朱建民, 邢定钰. 纳米结构ZnxFe3-xO4-α-Fe2O3多晶材料中的巨隧道磁电阻效应.  , 2001, 50(11): 2275-2277. doi: 10.7498/aps.50.2275
计量
  • 文章访问数:  6533
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-02-25
  • 上网日期:  2022-03-09
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map