搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二硫化钼的电子能带结构和低温输运实验进展

吴帆帆 季怡汝 杨威 张广宇

引用本文:
Citation:

二硫化钼的电子能带结构和低温输运实验进展

吴帆帆, 季怡汝, 杨威, 张广宇

Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide

Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu
PDF
HTML
导出引用
  • 二硫化钼是一种层状的过渡金属硫族化合物半导体, 它在二维自旋电子学、谷电子学及光电子学领域有很多的应用. 本综述以二硫化钼为代表, 系统介绍其单层、双层及转角双层的堆垛和能带结构; 介绍了转角双层莫尔超晶格的制备方法、以及低温电学输运方面的实验进展, 例如超导和强关联现象; 分析了转角过渡金属硫化物莫尔超晶格在优化接触和样品质量等方面存在的一些挑战, 并展望该领域未来的发展.
    Molybdenum disulfide is a layered transition metal chalcogenide semiconductor. It has many applications in the fields of two-dimensional spintronics, valleytronics and optoelectronics. In this review, molybdenum disulfide is taken as a representative to systematically introduce the energy band structures of single layer, bilayer and twisted bilayer molybdenum disulfide, as well as the latest experimental progress of its realization and low-temperature electrical transport, such as superconductivity and strong correlation phenomenon. Finally, two-dimensional transition metal chalcogenide moiré superlattice’s challenges in optimizing contact and sample quality are analyzed and the future development of this field is also presented.
      通信作者: 杨威, wei.yang@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0309600, 2021YFA1202900)、国家自然科学基金 (批准号: 11834017, 61888102)、中国科学院战略性先导科技专项 B (批准号: XDB30000000, XDB33000000)和广东省重点领域研发计划(批准号: 2020B0101340001)资助的课题
      Corresponding author: Yang Wei, wei.yang@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0309600, 2021YFA1202900), the National Natural Science Foundation of China (Grant Nos. 11834017, 61888102), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000, XDB33000000), and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001).
    [1]

    Liu G B, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 44 2643Google Scholar

    [2]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [3]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538Google Scholar

    [4]

    Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966Google Scholar

    [5]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [6]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [7]

    Liu H, Jiao L, Yang F, Cai Y, Wu X, Ho W, Gao C, Jia J, Wang N, Fan H, Yao W, Xie M 2014 Phys. Rev. Lett. 113 066105Google Scholar

    [8]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [9]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001Google Scholar

    [10]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [11]

    Wang H, Li C, Fang P, Zhang Z, Zhang J Z 2018 Chem. Soc. Rev. 47 6101Google Scholar

    [12]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [13]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [14]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [15]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [16]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [17]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [18]

    Molina-Sánchez A, Sangalli D, Hummer K, Marini A, Wirtz L 2013 Phys. Rev. B 88 045412Google Scholar

    [19]

    Wu Z, Zhou B T, Cai X, Cheung P, Liu G B, Huang M, Lin J, Han T, An L, Wang Y, Xu S, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611Google Scholar

    [20]

    Ma N, Jena D 2014 Phys. Rev. X 4 011043

    [21]

    Gustafsson M V, Yankowitz M, Forsythe C, Rhodes D, Watanabe K, Taniguchi T, Hone J, Zhu X, Dean C R 2018 Nat. Mater. 17 411Google Scholar

    [22]

    Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2018 Phys. Rev. B 97 201407Google Scholar

    [23]

    Fallahazad B, Movva H C, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601Google Scholar

    [24]

    Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G, Zhang X 2014 Nature 513 214Google Scholar

    [25]

    Pudalov V M, Gershensong M E, Kojima H 2014 Phys. Rev. B 90 075147Google Scholar

    [26]

    Feng J, Qian X, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [27]

    Qiu D Y, da Jornada F H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar

    [28]

    Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H, Burrus C A 1984 Phys. Rev. Lett. 53 2173Google Scholar

    [29]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [30]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262Google Scholar

    [31]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [32]

    Ghiotto A, Shih E M, Pereira G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [33]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [34]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [35]

    季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇 2021 70 118101Google Scholar

    Ji Y R, Chu Y B, Xian L D, Yang W, Zhang G Y 2021 Acta Phys. Sin. 70 118101Google Scholar

    [36]

    Brivio J, Alexander D T, Kis A 2011 Nano Lett. 11 5148Google Scholar

    [37]

    Cheiwchanchamnangij T, Lambrecht W R L 2012 Phys. Rev. B 85 205302Google Scholar

    [38]

    Molina-Sánchez A, Wirtz L 2011 Phys. Rev. B 84 155413Google Scholar

    [39]

    Feng W, Yao Y, Zhu W, Zhou J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108Google Scholar

    [40]

    Kośmider K, González J W, Fernández-Rossier J 2013 Phys. Rev. B 88 245436Google Scholar

    [41]

    Zhao Y, Du L, Yang S, Tian J, Li X, Shen C, Tang J, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Sun Z, Ye Y, Yang W, Zhang G 2022 Phy. Rev. B 105 L041411Google Scholar

    [42]

    沈成, 张菁, 时东霞, 张广宇 2015 化学学报 73 954Google Scholar

    Shen C, Zhang J, Shi D, Zhang G 2015 Acta Chim. Sin. 73 954Google Scholar

    [43]

    Marinov K, Avsar A, Watanabe K, Taniguchi T, Kis A 2017 Nat. Commun. 8 1938Google Scholar

    [44]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437Google Scholar

    [45]

    Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991Google Scholar

    [46]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212Google Scholar

    [47]

    Tang J, Wang Q, Wei Z, Shen C, Lu X, Wang S, Zhao Y, Liu J, Li N, Chu Y, Tian J, Wu F, Yang W, He C, Yang R, Shi D, Watanabe K, Taniguchi T, Zhang G 2020 Adv. Electron. Mater. 6 2000550Google Scholar

    [48]

    Zhou S H, Zhou C W, Yang X D, Li Y, Zhong J Q, Mao H Y 2021 Chin. Phys. Lett. 38 057305Google Scholar

    [49]

    Schmidt H, Giustiniano F, Eda G 2015 Chem. Soc. Rev. 44 7715Google Scholar

    [50]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [51]

    Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar

    [52]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 30

    [53]

    Kappera R, Voiry D, Yalcin S E, Jen W, Acerce M, Torrel S, Branch B, Lei S, Chen W, Najmaei S, Lou J, Ajayan P M, Gupta G, Mohite A D, Chhowalla M 2014 APL Mater. 2 092516Google Scholar

    [54]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [55]

    Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto A H, Martin J, Adam S, Ozyilmaz B, Eda G 2014 Nano Lett. 14 1909Google Scholar

    [56]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534Google Scholar

    [57]

    Lin J, Han T, Piot B A, Wu Z, Xu S, Long G, An L, Cheung P, Zheng P P, Plochocka P, Dai X, Maude D K, Zhang F, Wang N 2019 Nano Lett. 19 1736Google Scholar

    [58]

    Pisoni R, Kormanyos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [59]

    Isihara A, Smrcka L 1986 J. Phys. C:Solid State Phys. 19 6777Google Scholar

    [60]

    Kormányos A, Rakyta P, Burkard G 2015 New J. Phys. 17 103006Google Scholar

    [61]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [62]

    Zhou B T, Taguchi K, Kawaguchi Y, Tanaka Y, Law K T 2019 Commun. Phys. 2 26Google Scholar

    [63]

    Canonico L M, Cysne T P, Molina-Sanchez A, Muniz R B, Rappoport T G 2020 Phys. Rev. B 101 161409Google Scholar

    [64]

    孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302Google Scholar

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302Google Scholar

    [65]

    Onga M, Zhang Y, Ideue T, Iwasa Y 2017 Nat. Mater. 16 1193Google Scholar

    [66]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353Google Scholar

    [67]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Jr., Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [68]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [69]

    Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D, Xu X 2013 Nat. Phys. 9 149Google Scholar

    [70]

    Kormányos A, Zólyomi V, Fal'ko V I, Burkard G 2018 Phys. Rev. B 98 035408Google Scholar

    [71]

    Chen P, Cheng C, Shen C, Zhang J, Wu S, Lu X, Wang S, Du L, Watanabe K, Taniguchi T, Sun J, Yang R, Shi D, Liu K, Meng S, Zhang G 2019 Appl. Phys. Lett. 115 083104Google Scholar

    [72]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421Google Scholar

    [73]

    Du L, Zhang T, Liao M, Liu G, Wang S, He R, Ye Z, Yu H, Yang R, Shi D, Yao Y, Zhang G 2018 Phys. Rev. B 97 165410Google Scholar

    [74]

    Pisoni R, Davatz T, Watanabe K, Taniguchi T, Ihn T, Ensslin K 2019 Phys. Rev. Lett. 123 117702Google Scholar

    [75]

    Suzuki R, Sakano M, Zhang Y J, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R, Iwasa Y 2014 Nat. Nanotechnol. 9 611Google Scholar

    [76]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [77]

    Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran F R, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H 2018 Nat. Chem. 10 638Google Scholar

    [78]

    张浩哲, 徐春燕, 南海燕, 肖少庆, 顾晓峰 2020 69 246101Google Scholar

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101Google Scholar

    [79]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128Google Scholar

    [80]

    Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, Zhang G 2017 J. Am. Chem. Soc. 139 10216Google Scholar

    [81]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [82]

    Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chemistry 24 15942Google Scholar

    [83]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [84]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [85]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [86]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [87]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [88]

    Xian L, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, Rubio A 2021 Nat. Commun. 12 5644Google Scholar

    [89]

    He J, Hummer K, Franchini C 2014 Phys. Rev. B 89 075409Google Scholar

    [90]

    Suri N, Wang C, Zhang Y, Xiao D 2021 Nano Lett. 21 10026Google Scholar

    [91]

    Yu H, Yao W 2021 Phys. Rev. X 11 021042

    [92]

    Fleischmann M, Gupta R, Sharma S, Shallcross S 2019 arXiv:1901.04679v1 [cond-mat.mes-hall]

    [93]

    Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2019 arXiv:1910.13068 [cond-mat.str-el]

    [94]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [95]

    Naik M H, Kundu S, Maity I, Jain M 2020 Phys. Rev. B 102 075413Google Scholar

    [96]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [97]

    Devakul T, Crepel V, Zhang Y, Fu L 2021 Nat. Commun. 12 6730Google Scholar

    [98]

    Roch J G, Froehlicher G, Leisgang N, Makk P, Watanabe K, Taniguchi T, Warburton R J 2019 Nat. Nanotechnol. 14 432Google Scholar

    [99]

    Roch J G, Miserev D, Froehlicher G, Leisgang N, Sponfeldner L, Watanabe K, Taniguchi T, Klinovaja J, Loss D, Warburton R J 2020 Phys. Rev. Lett. 124 187602Google Scholar

    [100]

    Zhou B T, Egan S, Franz M 2022 Phys. Rev. Res. 4 L012032

    [101]

    Dalal A, Ruhman J 2021 Phys. Rev. Res. 3 043173Google Scholar

    [102]

    Huang S, Liang L, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 1435Google Scholar

    [103]

    Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H, Tan P H 2018 ACS Nano 12 8770Google Scholar

    [104]

    Yeh P C, Jin W, Zaki N, Kunstmann J, Chenet D, Arefe G, Sadowski J T, Dadap J I, Sutter P, Hone J, Osgood R M, Jr. 2016 Nano Lett. 16 953Google Scholar

    [105]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [106]

    Naik M H, Maity I, Maiti P K, Jain M 2019 J. Phys. Chem. C. 123 9770

    [107]

    Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F, Li X 2021 Nat. Mater. 20 1100Google Scholar

    [108]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153Google Scholar

    [109]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [110]

    Liao M, Nicolini P, Du L, Yuan J, Wang S, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D, Zhang G 2022 Nat. Mater. 21 47Google Scholar

    [111]

    An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y, Wang N 2020 Nanoscale Horiz. 5 1309Google Scholar

    [112]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [113]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [114]

    Giraldo-Gallo P, Galvis J A, Stegen Z, Modic K A, Balakirev F F, Betts J B, Lian X, Moir C, Riggs S C, Wu J, Bollinger A T, He X, Bozovic I, Ramshaw B J, McDonald R D, Boebinger G S, Shekhter A 2018 Science 361 479Google Scholar

    [115]

    Chu Z, Regan E C, Ma X, Wang D, Xu Z, Utama M I B, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Wang F, Lai K 2020 Phys. Rev. Lett. 125 186803Google Scholar

    [116]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [117]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [118]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [119]

    Li T, Zhu J, Tang Y, Watanabe K, Taniguchi T, Elser V, Shan J, Mak K F 2021 Nat. Nanotechnol. 16 1068Google Scholar

    [120]

    Jang J, Hunt B M, Pfeiffer L N, West K W, Ashoori R C 2016 Nat. Phys. 13 340

    [121]

    Kumar M, Laitinen A, Hakonen P 2018 Nat. Commun. 9 2776Google Scholar

    [122]

    Goldman V J, Santos M, Shayegan M, Cunningham J E 1990 Phys. Rev. Lett. 65 2189Google Scholar

    [123]

    Padhi B, Chitra R, Phillips P W 2021 Phys. Rev. B 103 125146

    [124]

    Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J 2021 Nature 593 211Google Scholar

    [125]

    Li S L, Tsukagoshi K, Orgiu E, Samori P 2016 Chem. Soc. Rev. 45 118Google Scholar

  • 图 1  单层二硫化钼 (a) 2H相原子结构示意图[36]; (b) 准粒子自洽格林函数方法计算得到的能带结构[37]; (c) 荧光谱[42]; (d) 朗道扇形图[58]; (e) 谷霍尔效应示意图

    Fig. 1.  Single layer molybdenum disulfide: (a) Schematic diagram of atomic structure of 2H phase[36]; (b) energy band structure obtained by quasiparticle self-consistent GW (QSGW) method [37]; (c) photoluminescence spectra[42]; (d) Landau fan[58]; (e) schematic of valley hall effect.

    图 2  双层二硫化钼的能带结构与物性 (a) 本征双层二硫化钼的原子结构示意图; (b) 准粒子自洽格林函数方法计算得到的能带结构图[37]; (c) 电场可调的谷霍尔效应[72]; (d) 转角双层二硫化钼中的莫尔超晶格结构[88]; (e) 2.65°转角的双层二硫化钼的价带能带结构[88]; (f) 非平庸的拓扑子能带[100]

    Fig. 2.  Bilayer molybdenum disulfide’s band structure and physical properties: (a) Atomic structure of natural double-layer molybdenum disulfide; (b) QSGW calculated band structure[37]; (c) electric field tunable valley Hall effect[72]; (d) moiré superlattice in twisted bilayer molybdenum disulfide[88]; (e) valence band structure of twisted bilayer molybdenum disulfide with 2.65°[88]; (f) non-trivial topological flat bands[100].

    图 3  精准制备不同转角的多层同质结 (a), (e)“捡起堆叠”法示意图, 红色框表示半球形基板的放大视图[109]; (b)—(d) 示意图过程和 (f)—(h) 相应步骤的光学结果, (b) 和 (f) 表示基板和底部单层石墨烯的部分接触[109]; (i) 利用聚二甲基硅氧烷 (PDMS) 作为媒介, 将分割好的定向单层二硫化钼堆叠成所需转角[108]; (j) 在沉积300 nm二氧化硅的硅衬底上, 具有精确控制的转角多层MoS2薄膜[108]

    Fig. 3.  Twist angle engineering of multilayer homostructures. (a), (e) Schematic of layer pick-up. The red box represents a zoom-in view of the hemispherical handle substrate[109]. (b)–(d) Schematics and (f)–(h) corresponding optical micrographs of successive stacking steps. Panels (b) and (f) illustrate a partial contact of the handle with the bottom graphene[109]. (i) The water-assisted transfer process. Polydimethylsiloxane (PDMS) are used as transfer medium[108]. (j) Image of multilayer MoS2 films with precise-controlled twist angles on Si substrates with 300 nm SiO2[108].

    图 4  转角双层二硫化钼中可能存在的强关联现象 (a) 关联绝缘态, 红线代表莫特绝缘态; 蓝色区域代表电荷局域态与费米液体共存的状态, 称为轨道选择性莫特态; 黑色虚线内代表近藤晶格模型[101]; (b) 整数填充附近的超导相变; (c)量子反常霍尔效应; (d) 魏格纳晶格态, 图(d)表示了2/3电子填充态[123]; (e) 量子临界行为, 红色和蓝色区域表示电阻随温度的依赖关系, 其中αβ

    Fig. 4.  Strong correlation phenomenon predicted in twisted bilayer MoS2. (a) Schematic phase diagram. A charge localized state of one species can coexist with a Fermi liquid state of the other, which is known as the orbitally selective Mott (OSM) state. Inside the region marked by the dashed black line the essential ingredients of a Kondo lattice model are realized. The red lines indicate correlated insulating states[101]. (b) Superconductivity in the doped Mott insulator. (c) Quantum anomalous Hall effect. (d) Wigner Crystal state. The figure shows representative 2/3 electron filling[123]. (e) Quantum critical behaviors in which αβ. The blue and red regions indicate the resistance dependence on temperature.

    Baidu
  • [1]

    Liu G B, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 44 2643Google Scholar

    [2]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [3]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538Google Scholar

    [4]

    Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966Google Scholar

    [5]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [6]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [7]

    Liu H, Jiao L, Yang F, Cai Y, Wu X, Ho W, Gao C, Jia J, Wang N, Fan H, Yao W, Xie M 2014 Phys. Rev. Lett. 113 066105Google Scholar

    [8]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [9]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001Google Scholar

    [10]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [11]

    Wang H, Li C, Fang P, Zhang Z, Zhang J Z 2018 Chem. Soc. Rev. 47 6101Google Scholar

    [12]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [13]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [14]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [15]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [16]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [17]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [18]

    Molina-Sánchez A, Sangalli D, Hummer K, Marini A, Wirtz L 2013 Phys. Rev. B 88 045412Google Scholar

    [19]

    Wu Z, Zhou B T, Cai X, Cheung P, Liu G B, Huang M, Lin J, Han T, An L, Wang Y, Xu S, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611Google Scholar

    [20]

    Ma N, Jena D 2014 Phys. Rev. X 4 011043

    [21]

    Gustafsson M V, Yankowitz M, Forsythe C, Rhodes D, Watanabe K, Taniguchi T, Hone J, Zhu X, Dean C R 2018 Nat. Mater. 17 411Google Scholar

    [22]

    Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2018 Phys. Rev. B 97 201407Google Scholar

    [23]

    Fallahazad B, Movva H C, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601Google Scholar

    [24]

    Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G, Zhang X 2014 Nature 513 214Google Scholar

    [25]

    Pudalov V M, Gershensong M E, Kojima H 2014 Phys. Rev. B 90 075147Google Scholar

    [26]

    Feng J, Qian X, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [27]

    Qiu D Y, da Jornada F H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar

    [28]

    Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H, Burrus C A 1984 Phys. Rev. Lett. 53 2173Google Scholar

    [29]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [30]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262Google Scholar

    [31]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [32]

    Ghiotto A, Shih E M, Pereira G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [33]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [34]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [35]

    季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇 2021 70 118101Google Scholar

    Ji Y R, Chu Y B, Xian L D, Yang W, Zhang G Y 2021 Acta Phys. Sin. 70 118101Google Scholar

    [36]

    Brivio J, Alexander D T, Kis A 2011 Nano Lett. 11 5148Google Scholar

    [37]

    Cheiwchanchamnangij T, Lambrecht W R L 2012 Phys. Rev. B 85 205302Google Scholar

    [38]

    Molina-Sánchez A, Wirtz L 2011 Phys. Rev. B 84 155413Google Scholar

    [39]

    Feng W, Yao Y, Zhu W, Zhou J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108Google Scholar

    [40]

    Kośmider K, González J W, Fernández-Rossier J 2013 Phys. Rev. B 88 245436Google Scholar

    [41]

    Zhao Y, Du L, Yang S, Tian J, Li X, Shen C, Tang J, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Sun Z, Ye Y, Yang W, Zhang G 2022 Phy. Rev. B 105 L041411Google Scholar

    [42]

    沈成, 张菁, 时东霞, 张广宇 2015 化学学报 73 954Google Scholar

    Shen C, Zhang J, Shi D, Zhang G 2015 Acta Chim. Sin. 73 954Google Scholar

    [43]

    Marinov K, Avsar A, Watanabe K, Taniguchi T, Kis A 2017 Nat. Commun. 8 1938Google Scholar

    [44]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437Google Scholar

    [45]

    Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991Google Scholar

    [46]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212Google Scholar

    [47]

    Tang J, Wang Q, Wei Z, Shen C, Lu X, Wang S, Zhao Y, Liu J, Li N, Chu Y, Tian J, Wu F, Yang W, He C, Yang R, Shi D, Watanabe K, Taniguchi T, Zhang G 2020 Adv. Electron. Mater. 6 2000550Google Scholar

    [48]

    Zhou S H, Zhou C W, Yang X D, Li Y, Zhong J Q, Mao H Y 2021 Chin. Phys. Lett. 38 057305Google Scholar

    [49]

    Schmidt H, Giustiniano F, Eda G 2015 Chem. Soc. Rev. 44 7715Google Scholar

    [50]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [51]

    Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar

    [52]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 30

    [53]

    Kappera R, Voiry D, Yalcin S E, Jen W, Acerce M, Torrel S, Branch B, Lei S, Chen W, Najmaei S, Lou J, Ajayan P M, Gupta G, Mohite A D, Chhowalla M 2014 APL Mater. 2 092516Google Scholar

    [54]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [55]

    Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto A H, Martin J, Adam S, Ozyilmaz B, Eda G 2014 Nano Lett. 14 1909Google Scholar

    [56]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534Google Scholar

    [57]

    Lin J, Han T, Piot B A, Wu Z, Xu S, Long G, An L, Cheung P, Zheng P P, Plochocka P, Dai X, Maude D K, Zhang F, Wang N 2019 Nano Lett. 19 1736Google Scholar

    [58]

    Pisoni R, Kormanyos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [59]

    Isihara A, Smrcka L 1986 J. Phys. C:Solid State Phys. 19 6777Google Scholar

    [60]

    Kormányos A, Rakyta P, Burkard G 2015 New J. Phys. 17 103006Google Scholar

    [61]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [62]

    Zhou B T, Taguchi K, Kawaguchi Y, Tanaka Y, Law K T 2019 Commun. Phys. 2 26Google Scholar

    [63]

    Canonico L M, Cysne T P, Molina-Sanchez A, Muniz R B, Rappoport T G 2020 Phys. Rev. B 101 161409Google Scholar

    [64]

    孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302Google Scholar

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302Google Scholar

    [65]

    Onga M, Zhang Y, Ideue T, Iwasa Y 2017 Nat. Mater. 16 1193Google Scholar

    [66]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353Google Scholar

    [67]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Jr., Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [68]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [69]

    Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D, Xu X 2013 Nat. Phys. 9 149Google Scholar

    [70]

    Kormányos A, Zólyomi V, Fal'ko V I, Burkard G 2018 Phys. Rev. B 98 035408Google Scholar

    [71]

    Chen P, Cheng C, Shen C, Zhang J, Wu S, Lu X, Wang S, Du L, Watanabe K, Taniguchi T, Sun J, Yang R, Shi D, Liu K, Meng S, Zhang G 2019 Appl. Phys. Lett. 115 083104Google Scholar

    [72]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421Google Scholar

    [73]

    Du L, Zhang T, Liao M, Liu G, Wang S, He R, Ye Z, Yu H, Yang R, Shi D, Yao Y, Zhang G 2018 Phys. Rev. B 97 165410Google Scholar

    [74]

    Pisoni R, Davatz T, Watanabe K, Taniguchi T, Ihn T, Ensslin K 2019 Phys. Rev. Lett. 123 117702Google Scholar

    [75]

    Suzuki R, Sakano M, Zhang Y J, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R, Iwasa Y 2014 Nat. Nanotechnol. 9 611Google Scholar

    [76]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [77]

    Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran F R, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H 2018 Nat. Chem. 10 638Google Scholar

    [78]

    张浩哲, 徐春燕, 南海燕, 肖少庆, 顾晓峰 2020 69 246101Google Scholar

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101Google Scholar

    [79]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128Google Scholar

    [80]

    Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, Zhang G 2017 J. Am. Chem. Soc. 139 10216Google Scholar

    [81]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [82]

    Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chemistry 24 15942Google Scholar

    [83]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [84]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [85]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [86]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [87]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [88]

    Xian L, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, Rubio A 2021 Nat. Commun. 12 5644Google Scholar

    [89]

    He J, Hummer K, Franchini C 2014 Phys. Rev. B 89 075409Google Scholar

    [90]

    Suri N, Wang C, Zhang Y, Xiao D 2021 Nano Lett. 21 10026Google Scholar

    [91]

    Yu H, Yao W 2021 Phys. Rev. X 11 021042

    [92]

    Fleischmann M, Gupta R, Sharma S, Shallcross S 2019 arXiv:1901.04679v1 [cond-mat.mes-hall]

    [93]

    Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2019 arXiv:1910.13068 [cond-mat.str-el]

    [94]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [95]

    Naik M H, Kundu S, Maity I, Jain M 2020 Phys. Rev. B 102 075413Google Scholar

    [96]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [97]

    Devakul T, Crepel V, Zhang Y, Fu L 2021 Nat. Commun. 12 6730Google Scholar

    [98]

    Roch J G, Froehlicher G, Leisgang N, Makk P, Watanabe K, Taniguchi T, Warburton R J 2019 Nat. Nanotechnol. 14 432Google Scholar

    [99]

    Roch J G, Miserev D, Froehlicher G, Leisgang N, Sponfeldner L, Watanabe K, Taniguchi T, Klinovaja J, Loss D, Warburton R J 2020 Phys. Rev. Lett. 124 187602Google Scholar

    [100]

    Zhou B T, Egan S, Franz M 2022 Phys. Rev. Res. 4 L012032

    [101]

    Dalal A, Ruhman J 2021 Phys. Rev. Res. 3 043173Google Scholar

    [102]

    Huang S, Liang L, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 1435Google Scholar

    [103]

    Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H, Tan P H 2018 ACS Nano 12 8770Google Scholar

    [104]

    Yeh P C, Jin W, Zaki N, Kunstmann J, Chenet D, Arefe G, Sadowski J T, Dadap J I, Sutter P, Hone J, Osgood R M, Jr. 2016 Nano Lett. 16 953Google Scholar

    [105]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [106]

    Naik M H, Maity I, Maiti P K, Jain M 2019 J. Phys. Chem. C. 123 9770

    [107]

    Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F, Li X 2021 Nat. Mater. 20 1100Google Scholar

    [108]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153Google Scholar

    [109]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [110]

    Liao M, Nicolini P, Du L, Yuan J, Wang S, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D, Zhang G 2022 Nat. Mater. 21 47Google Scholar

    [111]

    An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y, Wang N 2020 Nanoscale Horiz. 5 1309Google Scholar

    [112]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [113]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [114]

    Giraldo-Gallo P, Galvis J A, Stegen Z, Modic K A, Balakirev F F, Betts J B, Lian X, Moir C, Riggs S C, Wu J, Bollinger A T, He X, Bozovic I, Ramshaw B J, McDonald R D, Boebinger G S, Shekhter A 2018 Science 361 479Google Scholar

    [115]

    Chu Z, Regan E C, Ma X, Wang D, Xu Z, Utama M I B, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Wang F, Lai K 2020 Phys. Rev. Lett. 125 186803Google Scholar

    [116]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [117]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [118]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [119]

    Li T, Zhu J, Tang Y, Watanabe K, Taniguchi T, Elser V, Shan J, Mak K F 2021 Nat. Nanotechnol. 16 1068Google Scholar

    [120]

    Jang J, Hunt B M, Pfeiffer L N, West K W, Ashoori R C 2016 Nat. Phys. 13 340

    [121]

    Kumar M, Laitinen A, Hakonen P 2018 Nat. Commun. 9 2776Google Scholar

    [122]

    Goldman V J, Santos M, Shayegan M, Cunningham J E 1990 Phys. Rev. Lett. 65 2189Google Scholar

    [123]

    Padhi B, Chitra R, Phillips P W 2021 Phys. Rev. B 103 125146

    [124]

    Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J 2021 Nature 593 211Google Scholar

    [125]

    Li S L, Tsukagoshi K, Orgiu E, Samori P 2016 Chem. Soc. Rev. 45 118Google Scholar

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态.  , 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文. 叠层/转角二维原子晶体结构与极化激元的近场光学表征.  , 2023, 72(2): 027102. doi: 10.7498/aps.72.20222145
    [3] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合.  , 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [4] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应.  , 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [6] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应.  , 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [7] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展.  , 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [8] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响.  , 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [9] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [10] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质.  , 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [11] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [13] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [14] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [15] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [16] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [17] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响.  , 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [19] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [20] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
计量
  • 文章访问数:  11459
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-02-11
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map