-
霍尔推力器由于推力密度大、结构简单等特点, 在商业航天领域具有广泛的应用前景. 为了进一步提升小功率霍尔推力器的性能, 克服低轨卫星用小功率霍尔推力器性能受限于输入功率和最大磁场强度的问题, 本文利用数值模拟和理论分析方法研究了霍尔推力器放电通道中径向磁场分布对推力器性能的影响. 在轴向磁场分布和最大径向磁场强度一定的情况下, 通过改变径向磁场梯度实现径向磁场对推力器性能影响的研究. 结果表明, 在放电参数、推进剂流率以及轴向磁场不变的情况下, 加速区的电势随着径向距离的增加而减小. 因此, 靠近推力器放电通道内壁侧的径向磁场梯度越大, 离子沿着轴向漂移到达推力器出口的动能越大, 推力器的推力越大. 本文的研究结果为霍尔推力器的磁场设计, 性能优化提供了理论支撑.The Hall-effect thruster has wide applications for commercial aerospace because of the high thrust density and simple structure. In order to further improve the performance of low-power Hall thruster and to solve the problem that the performance of low-power Hall thruster for low-orbit satellites is limited by the input power and maximum magnetic field intensity, the influence of radial magnetic field distribution in the discharge channel on the performance of the thruster is studied by numerical simulation and theoretical analysis in this work through changing the radial magnetic gradient on condition that the axial magnetic profile and the magnetic strength remain unchanged. The results show that the potential of the acceleration zone decreases with the increase of radial distance when the discharge parameters, propellant flow rate and axial magnetic field are unchanged. Therefore, the greater the radial magnetic field gradient near the inner wall of the thruster discharge channel, the greater the kinetic energy of the ions drifting along the axial direction to the thruster outlet, , and the greater the thrust of thruster. The research results of this work provide theoretical support for the magnetic field design and performance optimization of hall thrusters.
[1] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203Google Scholar
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar
[2] 李建鹏, 荆伍银, 赵以德 2022 71 015202Google Scholar
Li J P, Jing W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202Google Scholar
[3] Cusson S E, Dale E T, Jorns B A, Gallimore A D 2019 Phys. Plasmas 26 023506Google Scholar
[4] Lubos B, Micheal K 2012 Phys. Plasmas 111 123302Google Scholar
[5] Mikellides I G, Katz I, Hofer R R, Geobel D M 2013 Phys. Plasmas 102 023509
[6] Mikellides I G, Katz I, Hofer R R 2011 47th AIAA /ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego California, USA, July 31–August 03, 2011 p2011-5809-1
[7] Fruchtamn A, Fisch N J, Raitses Y 2001 Phys. Plasmas 8 1048Google Scholar
[8] Karadag B, Cho S, Funaki I 2018 J. Appl. Phys. 123 153302Google Scholar
[9] Hofer R R, Gallimore 2006 J. Propul. Power 22 732Google Scholar
[10] Garrigues L, Hagelaar G J M, Bareilles J, Boniface C, Boeuf 2003 Phys. Plasmas 10 4886Google Scholar
[11] Gawron D, Mazouffre S Sadeghi N Heron A 2008 Plasma Sources Sci. Technol. 17 025001Google Scholar
[12] Andreussi T, Giannetti V, Leporini A. Saravia M M, Andrenucci M 2018 Plasma Phys. Control. Fusion 60 014015Google Scholar
[13] Garrigues L, Boniface C, Hagelaar G J M, Boeuf J P 2008 Phys. Plasmas 15 114502Google Scholar
[14] Perez-Luna J, Hagelaar G J M, Garrigues L, Boeuf J P 2007 Phys. Plasmas 14 113502Google Scholar
[15] Kim V 1998 J. Propul. Power 5 736
[16] Ducrocq A, Adam J C, Heron A, Laval G 2006 Phys. Plasmas 13 102111Google Scholar
[17] Choueiri E Y 2001 Phys. Plasmas 8 1411Google Scholar
[18] Romadanov I, Raitses Y, Smolyakov A 2018 Plasma Sources Sci. Technol. 27 094006Google Scholar
[19] Wei L Q, Li W B, Ding Y J, Yu D R 2018 Plasma Sci. Technol. 20 075502Google Scholar
[20] Ellison C L, Raitses Y Fisch N J 2012 Phys. Plasmas 19 013503Google Scholar
[21] Boeuf J P, Garrigues L 2018 Phys. Plasmas 25 061204Google Scholar
[22] Hara K, Sekerak M J, Boyd I D 2014 J. Appl. Phys. 115 203304Google Scholar
[23] Hara K, Sekerak M J, Boyd I D 2014 J. Appl. Phys. 21 122103
[24] Brown N P, Walker M L R 2020 Appl. Sci. 10 3775Google Scholar
[25] 程佳兵, 康小录, 杭光荣, 王宣 2019 推进技术 40 714Google Scholar
Chen J B, Kang X L, Hang G R, Wang X 2019 J. Propul. Technol. 40 714Google Scholar
[26] 丁永杰, 扈延林, 颜世林, 李鸿, 李玉全, 蔡宁泊 2015 推进技术 36 795Google Scholar
Ding Y J, Hu Y L, Yan S L, Li H, Li Y Q, Cai N B 2015 J. Propul. Technol. 36 795Google Scholar
[27] 张旭, 于达仁 2013 高电压技术 39 1628Google Scholar
Zhang X, Yu D R 2013 High Volt. Eng. 39 1628Google Scholar
[28] 段萍, 宋继磊, 姜博瑞, 陈龙, 理文庆, 胡翔, 刘广睿 2020 推进技术 41 194Google Scholar
Duan P, Song J L, Jiang B R, Chen L, Li W Q, Hu X, Liu G R 2020 J. Propul. Technol. 41 194Google Scholar
[29] Harvey M L 2014 M. S. Dissertation (Florida: Embry-Riddle Aeronautical University)
[30] Choueiri E Y 2001 Phys. Plasmas 8 5025Google Scholar
[31] Kornberg O 2007 M. S. Dissertation (Florida: Embry-Riddle Aeronautical University)
-
-
[1] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203Google Scholar
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar
[2] 李建鹏, 荆伍银, 赵以德 2022 71 015202Google Scholar
Li J P, Jing W Y, Zhao Y D 2022 Acta Phys. Sin. 71 015202Google Scholar
[3] Cusson S E, Dale E T, Jorns B A, Gallimore A D 2019 Phys. Plasmas 26 023506Google Scholar
[4] Lubos B, Micheal K 2012 Phys. Plasmas 111 123302Google Scholar
[5] Mikellides I G, Katz I, Hofer R R, Geobel D M 2013 Phys. Plasmas 102 023509
[6] Mikellides I G, Katz I, Hofer R R 2011 47th AIAA /ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego California, USA, July 31–August 03, 2011 p2011-5809-1
[7] Fruchtamn A, Fisch N J, Raitses Y 2001 Phys. Plasmas 8 1048Google Scholar
[8] Karadag B, Cho S, Funaki I 2018 J. Appl. Phys. 123 153302Google Scholar
[9] Hofer R R, Gallimore 2006 J. Propul. Power 22 732Google Scholar
[10] Garrigues L, Hagelaar G J M, Bareilles J, Boniface C, Boeuf 2003 Phys. Plasmas 10 4886Google Scholar
[11] Gawron D, Mazouffre S Sadeghi N Heron A 2008 Plasma Sources Sci. Technol. 17 025001Google Scholar
[12] Andreussi T, Giannetti V, Leporini A. Saravia M M, Andrenucci M 2018 Plasma Phys. Control. Fusion 60 014015Google Scholar
[13] Garrigues L, Boniface C, Hagelaar G J M, Boeuf J P 2008 Phys. Plasmas 15 114502Google Scholar
[14] Perez-Luna J, Hagelaar G J M, Garrigues L, Boeuf J P 2007 Phys. Plasmas 14 113502Google Scholar
[15] Kim V 1998 J. Propul. Power 5 736
[16] Ducrocq A, Adam J C, Heron A, Laval G 2006 Phys. Plasmas 13 102111Google Scholar
[17] Choueiri E Y 2001 Phys. Plasmas 8 1411Google Scholar
[18] Romadanov I, Raitses Y, Smolyakov A 2018 Plasma Sources Sci. Technol. 27 094006Google Scholar
[19] Wei L Q, Li W B, Ding Y J, Yu D R 2018 Plasma Sci. Technol. 20 075502Google Scholar
[20] Ellison C L, Raitses Y Fisch N J 2012 Phys. Plasmas 19 013503Google Scholar
[21] Boeuf J P, Garrigues L 2018 Phys. Plasmas 25 061204Google Scholar
[22] Hara K, Sekerak M J, Boyd I D 2014 J. Appl. Phys. 115 203304Google Scholar
[23] Hara K, Sekerak M J, Boyd I D 2014 J. Appl. Phys. 21 122103
[24] Brown N P, Walker M L R 2020 Appl. Sci. 10 3775Google Scholar
[25] 程佳兵, 康小录, 杭光荣, 王宣 2019 推进技术 40 714Google Scholar
Chen J B, Kang X L, Hang G R, Wang X 2019 J. Propul. Technol. 40 714Google Scholar
[26] 丁永杰, 扈延林, 颜世林, 李鸿, 李玉全, 蔡宁泊 2015 推进技术 36 795Google Scholar
Ding Y J, Hu Y L, Yan S L, Li H, Li Y Q, Cai N B 2015 J. Propul. Technol. 36 795Google Scholar
[27] 张旭, 于达仁 2013 高电压技术 39 1628Google Scholar
Zhang X, Yu D R 2013 High Volt. Eng. 39 1628Google Scholar
[28] 段萍, 宋继磊, 姜博瑞, 陈龙, 理文庆, 胡翔, 刘广睿 2020 推进技术 41 194Google Scholar
Duan P, Song J L, Jiang B R, Chen L, Li W Q, Hu X, Liu G R 2020 J. Propul. Technol. 41 194Google Scholar
[29] Harvey M L 2014 M. S. Dissertation (Florida: Embry-Riddle Aeronautical University)
[30] Choueiri E Y 2001 Phys. Plasmas 8 5025Google Scholar
[31] Kornberg O 2007 M. S. Dissertation (Florida: Embry-Riddle Aeronautical University)
计量
- 文章访问数: 4798
- PDF下载量: 99
- 被引次数: 0