-
有机-无机杂化型比色湿度传感器可通过电学信号和颜色变化获取环境湿度, 并因其特征颜色区分度高、稳定性好、制备工艺简单等优点, 在湿度监测领域具有广阔的应用前景, 但其通常响应恢复时间长, 从而不利于湿度实时监测. 本文在聚酰亚胺(PI)-碘化镍(NiI2)有机无机杂化材料中掺杂纳米SiO2微球制备得到PI-SiO2/NiI2复合薄膜及比色湿度传感器, 对其表面形貌和湿敏特性进行了研究. 结果显示, PI-SiO2/NiI2薄膜具有蜂巢状的表面形貌, 传感器的特征颜色显著, 湿度响应时间小于1.5 s, 恢复时间小于18 s. 研究表明, 纳米SiO2微球掺杂能够较为显著地改善有机-无机杂化型比色湿度传感器的响应恢复特性, 这对于传感器性能的提升具有一定参考意义.
-
关键词:
- 比色湿度传感器 /
- 有机-无机杂化 /
- PI-SiO2/NiI2 /
- 响应恢复特性
The organic-inorganic hybrid colorimetric humidity sensor which can obtain environmental humidity by electrical signals and color changes has broad application prospects in the field of humidity monitoring because of its high feature color discrimination, excellent stability, and simple preparation process. However, its long response-recovery time is generally not conducive to real-time humidity monitoring. In this paper, nanometer silica particles are doped into polyimide(PI)-nickel(II) iodide(NiI2) organic-inorganic hybrid materials to fabricate PI-SiO2/NiI2 composite films and colorimetric humidity sensors. Then their surface morphologies and humidity sensing properties are studied. It is found that PI-SiO2/NiI2 film possesses a honeycomb-like surface morphology, the humidity sensitivity of PI-SiO2/NiI2 colorimetric humidity sensor is better than that of other NiI2 based humidity sensors, its characteristic color is distinct in a range of 11%–97% RH humidity, and the humidity response time of the PI-SiO2/NiI2 colorimetric humidity sensor is less than 1.5 s, and the recovery time is less than 18 s. The research result indicates that the doping of nanometer silica particles can effectively improve response-recovery properties of the organic-inorganic hybrid colorimetric humidity sensor, which is helpful in improving the performance of the sensor.-
Keywords:
- colorimetric humidity sensor /
- organic-inorganic hybrid /
- PI-SiO2/NiI2 /
- response-recovery properties
[1] Mergu N, Kim H, Ryu J, Son Y 2020 Sens. Actuators. B 311 127906Google Scholar
[2] Dai J X, Zhang T, Zhao H R, Fei T 2017 Sens. Actuators. B 242 1108Google Scholar
[3] Wei Z Q, Zhou Z K, Li Q Y, Xue J C, Falco A D, Yang Z J, Zhou J H 2017 Small 13 7
[4] Hu X, Mu H, Miao J, Wang X W, Meng X S, Wang Z, Yan J L 2020 Polym. Chem. 11 4172Google Scholar
[5] Alrammouz R, Podlecki J, Abboud P, Sorli B, Habchi R 2018 Sens. Actuators. A 284 209Google Scholar
[6] You M H, Yan X, Zhang J, Wang X X, He X X, Yu M, Ning X, Long Y Z 2017 Nanoscale Res. Lett. 12 20Google Scholar
[7] 盛熙淳 2020 硕士学位论文 (湘潭: 湘潭大学)
Sheng X C 2020 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)
[8] Shinbo K, Otuki S, Kanbayashi Y, Ohdaira Y, Baba A, Kato K, Kaneko F, Miyadera N 2009 Thin Solid Films 518 629Google Scholar
[9] Konstantaki M, Pissadakis S, Pispas S, Madamopoulos N, Vainos N A 2006 Appl. Opt. 45 4567Google Scholar
[10] Zhang Y, Ren J X, Wu Y W, Zhong X L, Luo T, Cao J X, Yin M Q, Huang M P, Zhang Z Y 2020 Sens. Actuators, B 309 1
[11] Wang Z H, Zhang Y H, Wang W J, An Q, Tong W S 2019 Chem. Phys. Lett. 727 90Google Scholar
[12] Hosokawa H, Mochida T 2015 Langmuir 31 13048Google Scholar
[13] Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J W, Ha C S 2012 Prog. Polym. Sci. 37 907Google Scholar
[14] Agag T, Koga T, Takeichi T 2001 Polymer 42 3399Google Scholar
[15] Gouzman I, Grossman E, Verker R, Atar N, Bolker A, Eliaz N 2019 Adv. Mater. 31 1807738Google Scholar
[16] Cindro N, Tireli M, Karadeniz B, Mrla T, Užarević K 2019 ACS Sustainable Chem. Eng. 7 16301Google Scholar
[17] Zhu K M, Tang Y, Zhong X L, Xiong L, Zhang Yong, Tan C B, Song H J, Wang J B 2020 Adv. Electron. Mater. 6 1901330Google Scholar
[18] 李应龙, 饶元元, 王维, 谈发堂, 陈建国, 乔学亮 2014 高分子学报 4 970Google Scholar
Li Y L, Rao Y Y, Wang W, Tan F T, Chen J G, Qiao X L 2014 Acta Polym. Sin. 4 970Google Scholar
[19] 段翠佳, 曹义鸣, 介兴明, 王丽娜, 袁权 2014 高等学校化学学报 35 1584Google Scholar
Duan C J, Cao Y M, Jie X M, Wang L N, Yuan Q 2014 Chem. J. Chin. Univ. 35 1584Google Scholar
[20] Yu L, Xu H L, Monro T M, Lancaster D G, Xie Y, Zeng H B, Chen G Y, Liu X K 2017 Mater. Horiz. 4 72Google Scholar
[21] Yu Y, Zhang X M, Ma J P, Liu Q K, Wang P, Dong Y B 2014 Chem. Commun. 50 1444Google Scholar
[22] 吕鑫 2008 博士学位论文 (杭州: 浙江大学)
Lü X 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[23] 王兴磊, 何宽新, 张校刚, 米红宇, 罗建民 2007 无机化学学报 4 1533Google Scholar
Wang X L, He K X, Zhang X G, Mi H Y, Luo J M 2007 Chin. J. Inorg. Chem. 4 1533Google Scholar
[24] 康卫民, 范兰兰, 邓南平, 何宏升, 鞠敬鸽, 程博闻 2017 纺织学报 38 168
Kang W M, Fan L L, Deng N P, He H S, Ju J G, Cheng B W 2017 J. Text. Res. 38 168
[25] Feng L, Zhang Y, Xi J M, et al. 2008 Langmuir 24 4114Google Scholar
-
图 6 (a) PI-SiO2/NiI2比色湿度传感器的动态湿度响应曲线; (b) PI-SiO2/NiI2比色湿度传感器在11%—97% RH的湿度范围内的长期稳定性测试; (c) PI-SiO2/NiI2比色湿度传感器湿滞曲线图
Fig. 6. (a) Dynamic humidity response curve of PI-SiO2/NiI2 humidity sensor under various RH; (b) long-term stability test of PI-SiO2/NiI2 humidity sensor at humidity range of 11%–97% RH; (c) hysteresis characteristics of PI-SiO2/NiI2 humidity sensor.
表 1 比色湿度传感器的性能指标对比
Table 1. Performance comparison of colorimetric humidity sensors.
-
[1] Mergu N, Kim H, Ryu J, Son Y 2020 Sens. Actuators. B 311 127906Google Scholar
[2] Dai J X, Zhang T, Zhao H R, Fei T 2017 Sens. Actuators. B 242 1108Google Scholar
[3] Wei Z Q, Zhou Z K, Li Q Y, Xue J C, Falco A D, Yang Z J, Zhou J H 2017 Small 13 7
[4] Hu X, Mu H, Miao J, Wang X W, Meng X S, Wang Z, Yan J L 2020 Polym. Chem. 11 4172Google Scholar
[5] Alrammouz R, Podlecki J, Abboud P, Sorli B, Habchi R 2018 Sens. Actuators. A 284 209Google Scholar
[6] You M H, Yan X, Zhang J, Wang X X, He X X, Yu M, Ning X, Long Y Z 2017 Nanoscale Res. Lett. 12 20Google Scholar
[7] 盛熙淳 2020 硕士学位论文 (湘潭: 湘潭大学)
Sheng X C 2020 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)
[8] Shinbo K, Otuki S, Kanbayashi Y, Ohdaira Y, Baba A, Kato K, Kaneko F, Miyadera N 2009 Thin Solid Films 518 629Google Scholar
[9] Konstantaki M, Pissadakis S, Pispas S, Madamopoulos N, Vainos N A 2006 Appl. Opt. 45 4567Google Scholar
[10] Zhang Y, Ren J X, Wu Y W, Zhong X L, Luo T, Cao J X, Yin M Q, Huang M P, Zhang Z Y 2020 Sens. Actuators, B 309 1
[11] Wang Z H, Zhang Y H, Wang W J, An Q, Tong W S 2019 Chem. Phys. Lett. 727 90Google Scholar
[12] Hosokawa H, Mochida T 2015 Langmuir 31 13048Google Scholar
[13] Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J W, Ha C S 2012 Prog. Polym. Sci. 37 907Google Scholar
[14] Agag T, Koga T, Takeichi T 2001 Polymer 42 3399Google Scholar
[15] Gouzman I, Grossman E, Verker R, Atar N, Bolker A, Eliaz N 2019 Adv. Mater. 31 1807738Google Scholar
[16] Cindro N, Tireli M, Karadeniz B, Mrla T, Užarević K 2019 ACS Sustainable Chem. Eng. 7 16301Google Scholar
[17] Zhu K M, Tang Y, Zhong X L, Xiong L, Zhang Yong, Tan C B, Song H J, Wang J B 2020 Adv. Electron. Mater. 6 1901330Google Scholar
[18] 李应龙, 饶元元, 王维, 谈发堂, 陈建国, 乔学亮 2014 高分子学报 4 970Google Scholar
Li Y L, Rao Y Y, Wang W, Tan F T, Chen J G, Qiao X L 2014 Acta Polym. Sin. 4 970Google Scholar
[19] 段翠佳, 曹义鸣, 介兴明, 王丽娜, 袁权 2014 高等学校化学学报 35 1584Google Scholar
Duan C J, Cao Y M, Jie X M, Wang L N, Yuan Q 2014 Chem. J. Chin. Univ. 35 1584Google Scholar
[20] Yu L, Xu H L, Monro T M, Lancaster D G, Xie Y, Zeng H B, Chen G Y, Liu X K 2017 Mater. Horiz. 4 72Google Scholar
[21] Yu Y, Zhang X M, Ma J P, Liu Q K, Wang P, Dong Y B 2014 Chem. Commun. 50 1444Google Scholar
[22] 吕鑫 2008 博士学位论文 (杭州: 浙江大学)
Lü X 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[23] 王兴磊, 何宽新, 张校刚, 米红宇, 罗建民 2007 无机化学学报 4 1533Google Scholar
Wang X L, He K X, Zhang X G, Mi H Y, Luo J M 2007 Chin. J. Inorg. Chem. 4 1533Google Scholar
[24] 康卫民, 范兰兰, 邓南平, 何宏升, 鞠敬鸽, 程博闻 2017 纺织学报 38 168
Kang W M, Fan L L, Deng N P, He H S, Ju J G, Cheng B W 2017 J. Text. Res. 38 168
[25] Feng L, Zhang Y, Xi J M, et al. 2008 Langmuir 24 4114Google Scholar
计量
- 文章访问数: 5008
- PDF下载量: 97
- 被引次数: 0