搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学腔中一维玻色-哈伯德模型的奇异超固相

周晓凡 樊景涛 陈刚 贾锁堂

引用本文:
Citation:

光学腔中一维玻色-哈伯德模型的奇异超固相

周晓凡, 樊景涛, 陈刚, 贾锁堂

Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity

Zhou Xiao-Fan, Fan Jing-Tao, Chen Gang, Jia Suo-Tang
PDF
HTML
导出引用
  • 利用密度矩阵重整化群计算了光学腔中一维无自旋玻色-哈伯德模型的基态. 通过研究超流序、局域密度分布、二阶和三阶关联函数, 发现该系统出现了超越平均场理论的两个奇异超固相. 这两个超固相同时具备对角和非对角长程序, 其中一个展现出包络形式的密度调制振荡, 另一个展现出均匀的密度分布. 另外, 结合光场的超辐射序参量和腔内的平均光子数, 发现奇异超固相与腔光场的涨落存在密切关系. 该工作给出了光学腔内玻色哈伯德模型的超越平均场理论的新物理, 并提供了探索光学腔内光与物质集体物态的完整计算方法.
    Using a state-of-the-art numerical method density-matrix renormalization-group, we study the ground states of one-dimensional spinless Bose-Hubbard model inside a red-detuned cavity. By calculating the superfluid order, density distribution, second and third-order correlation functions, we find that there exist two novel supersolid phases with diagonal, off-diagonal orders beyond mean-field theory. One has package type density modulation along the lattice axis, another exhibits uniform density distribution. Moreover, by calculating the superradiant order parameter and the number of photon inside the cavity, we find that the novel supersolid phases are highly related to cavity-field fluctuation. Our work gives the physics beyond the mean-field theory of the Bose-Hubbard model inside an optical cavity, and provides the complete approach to fully explore the collective state of light and matter inside an optical cavity.
      通信作者: 樊景涛, fanjt@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2017YFA0304203)、国家自然科学基金 (批准号: 11674200, 12074232, 12004230, 11804204)、山西省“1331工程”重点学科建设计划和山西省回国留学人员科研资助项目(批准号: HGKY2019003) 资助的课题
      Corresponding author: Fan Jing-Tao, fanjt@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11674200, 12074232, 12004230, 11804204), the Fund for Shanxi “1331 Project” Key Subjects Construction, and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. HGKY2019003)
    [1]

    Bloch I, Dalibard J, Nascimbane S 2012 Nat. Phys. 8 267Google Scholar

    [2]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [3]

    Jaksch D, Zoller P 2005 Ann. Phys. 315 52Google Scholar

    [4]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [5]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [6]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [7]

    Nagy D, Konya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401Google Scholar

    [8]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [9]

    Mottl R, Brennecke F, Baumann K, Landig R, Donner T, Esslinger T 2012 Science 336 1570Google Scholar

    [10]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature 532 476Google Scholar

    [11]

    Lang J, Piazza F, Zwerger W 2017 New J. Phys. 19 123027Google Scholar

    [12]

    Caballero-Benitez S F, Mekhov I B 2015 Phys. Rev. Lett. 115 243604Google Scholar

    [13]

    Bakhtiari M R, Hemmerich A, Ritsch H, Thorwart M 2015 Phys. Rev. Lett. 114 123601Google Scholar

    [14]

    Dogra N, Brennecke F, Huber S D, Donner T 2016 Phys. Rev. A 94 023632Google Scholar

    [15]

    Niederle A E, Morigi G, Rieger H 2016 Phys. Rev. A 94 033607Google Scholar

    [16]

    Sundar B, Mueller E J 2016 Phys. Rev. A 94 033631Google Scholar

    [17]

    Chen Y, Yu Z, Zhai H 2016 Phys. Rev. A 93 041601(RGoogle Scholar

    [18]

    Panas J, Kauch A, Byczuk K 2017 Phys. Rev. B 95 115105Google Scholar

    [19]

    Flottat T, de Forges de Parny L, Hebert F, Rousseau V G, Batrouni G G 2017 Phys. Rev. B 95 144501Google Scholar

    [20]

    Bogner B, Danilo C D, Rieger H 2019 Eur. Phys. J. B 92 111Google Scholar

    [21]

    Boninsegni M, Prokofev N V 2012 Rev. Mod. Phys. 84 759Google Scholar

    [22]

    Leggett A J 1970 Phys. Rev. Lett. 25 1543Google Scholar

    [23]

    Otterlo A V, Wagenblast K H 1994 Phys. Rev. Lett. 72 3598Google Scholar

    [24]

    Batrouni G G, Scalettar R T, Zimanyi G T, Kampf A P 1995 Phys. Rev. Lett. 74 2527Google Scholar

    [25]

    Scalettar R T, Batrouni G G, Kampf A P, Zimanyi G T 1995 Phys. Rev. B 51 8467Google Scholar

    [26]

    Otterlo A V, Wagenblast K H, Baltin R, Bruder C, Fazio R, Schon G 1995 Phys. Rev. B 52 16176Google Scholar

    [27]

    Rossini D, Fazio R 2011 New J. Phys. 14 065012

    [28]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [29]

    Schollwok U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [30]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [31]

    Hodgman S S, Dall R G, Manning A G, Baldwin K G H, Truscott A G 2011 Science 331 1046Google Scholar

    [32]

    Liu H C 2016 Phys. Rev. A 94 023827Google Scholar

    [33]

    Schweigler T, Kasper V, Erne S, Mazets I, Rauer B, Cataldini F, Langen T, Gasenzer T, Berges J, Schmiedmayer J 2017 Nature 545 323Google Scholar

    [34]

    Hodgman S S, Khakimov R I, Truscott A G, Kheruntsyan K V 2017 Phys. Rev. Lett. 118 240402Google Scholar

    [35]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Leonard J, Greiner M 2019 Nature 573 385Google Scholar

    [36]

    Fan J, Zhou X, Zheng W, Yi W, Chen G, Jia S 2018 Phys. Rev. A 98 043613Google Scholar

    [37]

    Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E, Ketterle W 1999 Phys. Rev. Lett. 82 4569Google Scholar

    [38]

    Steinhauer J, Ozeri R, Katz N, Davidson N 2002 Phys. Rev. Lett. 88 120407Google Scholar

    [39]

    Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G, Greiner M 2016 Science 351 953Google Scholar

  • 图 1  左图: 玻色原子沿着腔轴方向$\hat x$被俘获在准一维(1D)背景光学晶格中, 费米气被两束圆偏振的横向(沿着$\hat z$方向) 抽运激光驱动. 右图: 隧穿系数t, 接触型相互作用${U_{\rm{s}}}$和无限长程相互作用${U_{\rm{l}}}$

    Fig. 1.  Left: Proposed experimental setup that the bosonic atoms trapped in a quasi-1D optical lattice interact with an optical cavity. Right: Illustration of the competing terms among the hopping t, the contact interaction ${U_{\rm{s}}}$ and the global-range interaction ${U_{\rm{l}}}$.

    图 2  (a1), (b1), (c1)超流序$G(r)$和插图$n(k)$; (a2), (b2), (c2)密度分布$\left\langle {{{\hat n}_j}} \right\rangle $; (a3), (b3), (c3)二阶关联${D^2}(l, j)$; (a4), (b4), (c4)三阶关联${D^3}\left( {i, l, j} \right)$. (a1)—(a3) 超固0相, 相互作用参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 6$; (b1)—(b3) 超固1相, 相互作用参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 4.4$; (c1)—(c3) 超固2相, 相互作用参数${U_{\rm{s}}} = 2$${U_{\rm{l}}} = 4.4$. 所有图中, 共有参数$L = 96$, $\rho = 0.4375$

    Fig. 2.  (a1), (b1), (c1) Superfluid order $G(r)$ and $n(k)$; (a2), (b2), (c2) density profile $\left\langle {{{\hat n}_j}} \right\rangle $; (a3), (b3), (c3) two order correlation ${D^2}\left( {l, j} \right)$; (a4), (b4), (c4) three order correlation ${D^3}\left( {i, l, j} \right)$ for $i = j$ of (a1)–(a3) supersolid 0 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 6$, (b1)–(b3) supersolid 1 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 4.4$, and (c1)–(c3) supersolid 2 phase with ${U_{\rm{s}}} = 2$ and ${U_{\rm{l}}} = 4.4$. In all subfigure, we have $L = 96$ and $\rho = 0.4375$.

    图 3  (a1), (b1)不同尺寸下的超流序$G(r)$, 插图为冥率的有限尺寸分析; (a2), (b2) $n(k = 0){{/}}L$ 的有限尺寸分析. (a1), (a2)超固1相, 参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 4.4$; (b1), (b2) 超固2相, 参数${U_{\rm{s}}} = 2$${U_{\rm{l}}} = 4.4$. 所有图中, 共有参数$\rho = 0.4375$

    Fig. 3.  (a1), (b1) Superfluid order $G(r)$ of several lattice length. The inset is the finite-size scaling of the decay rate. (a2), (b2) Finite-size scaling of $n(k = 0){{/}}L$. (a1), (a2) Supersolid 1 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 4.4$. (b1), (b2) Supersolid 2 phase with ${U_{\rm{s}}} = 2$ and ${U_{\rm{l}}} = 4.4$. In all subfigure, we have $\rho = 0.4375$.

    图 4  (a1)—(a3)和(b1)—(b3)密度分布$\left\langle {{{\hat n}_j}} \right\rangle $; (a4), (b4) ${\nu _{{\rm{peak}}}}$的有限尺寸分析. (a1)—(a4) 超固1相, 参数${U_{\rm{s}}} = 10$${U_{\rm{l}}} = 4.4$; (b) 超固2相, 参数${U_{\rm{s}}} = 2$${U_{\rm{l}}} = 4.4$. (a1), (b1) $L = 80$; (a2), (b2) $L = 64$; (a3), (b3) $L = 48$. 所有图中, 共有参数$\rho = 0.4375$

    Fig. 4.  (a1) –(a3) and (b1) –(b3) the density profile $\left\langle {{{\hat n}_j}} \right\rangle $; (a4), (b4) the finite-size scaling of the ${\nu _{{\rm{peak}}}}$. (a1)–(a4) Supersolid 1 phase with ${U_{\rm{s}}} = 10$ and ${U_{\rm{l}}} = 4.4$; (b1)–(b4) supersolid 2 phase with ${U_{\rm{s}}} = 2$ and ${U_{\rm{l}}} = 4.4$. (a1), (b1) $L = 80$; (a2), (b2) $L = 64$; (a3), (b3) $L = 48$. In all subfigure, we have $\rho = 0.4375$.

    图 5  $S(k = {\text{π}})$(黑色实线)和 ${\nu _{{\rm{peak}}}}$(蓝色方块) (a) 关于${U_{\rm{l}}}$的变化, 固定${U_{\rm{s}}} = 10$; (c) 关于${U_{\rm{s}}}$ 的变化, 固定${U_{\rm{l}}} = 4.4$. 平均光子数${\left| {\left\langle {\hat a} \right\rangle } \right|^2}$和腔中的光子数$\left\langle {{{\hat a}^{\dagger} }\hat a} \right\rangle $关于 (b) 关于${U_{\rm{l}}}$的变化, 固定${U_{\rm{s}}} = 10$; (d) 关于${U_{\rm{s}}}$的变化, 固定${U_{\rm{l}}} = 4.4$. 所有图中, 共有参数$L = 96$$\rho = 0.4375$. SF表示超流, MI表示莫特绝缘体, CDW表示电荷密度波, SS0表示超固0相, SS1表示超固1相, SS2表示超固2相

    Fig. 5.  The $S(k = {\text{π}})$(black solid line) and ${\nu _{{\rm{peak}}}}$(blue square) as function of (a) ${U_{\rm{l}}}$ with ${U_{\rm{s}}} = 10$, and (c) ${U_{\rm{s}}}$ with ${U_{\rm{l}}} = 4.4$. The number of cavity photons $\left\langle {{{\hat a}^{\dagger} }\hat a} \right\rangle $ and mean cavity-field ${\left| {\left\langle {\hat a} \right\rangle } \right|^2}$ as a function of (b) ${U_{\rm{l}}}$ with ${U_{\rm{s}}} = 10$, (d) ${U_{\rm{s}}}$ with ${U_{\rm{l}}} = 4.4$. In all subfigure, we have $L = 96$ and $\rho = 0.4375$. SF denotes superfluid, MI denotes Mott insulator, CDW denotes charge density wave, SS0 denotes supersolid 0, SS1 denotes supersolid 1, SS2 denotes supersolid 2.

    图 6  (a)—(c) ${U_{\rm{l}}}$-ρ平面的相图 (a) ${U_{\rm{s}}} = 0$; (b) ${U_{\rm{s}}} = 5$; (c) ${U_{\rm{s}}} = 10$. (d) ${U_{\rm{l}}}$-${U_{\rm{s}}}$平面的相图, 参数$\rho = 0.4375$. 所有图中, 共有参数$L = 96$. SF表示超流, MI表示莫特绝缘体, CDW表示电荷密度波, SS0表示超固0相, SS1表示超固1相, SS2表示超固2相

    Fig. 6.  (a)–(c) Phase-diagram between ${U_{\rm{l}}}$ and ρ with (a) ${U_{\rm{s}}} = 0$, (b) ${U_{\rm{s}}} = 5$ and (c) ${U_{\rm{s}}} = 10$. (d) Phase-diagram between ${U_{\rm{l}}}$ and ${U_{\rm{s}}}$, with filling $\rho = 0.4375$. In all subfigure, we have $L = 96$. SF denotes superfluid, MI denotes Mott insulator, CDW denotes charge density wave, SS0 denotes supersolid 0, SS1 denotes supersolid 1, SS2 denotes supersolid 2.

    表 1  量子相对应的序参量

    Table 1.  Corresponding orders of the phases.

    序/相简写超流SF莫特绝缘体MI电荷密度波CDW超固0相SS0超固1相SS1超固2相SS2
    $n~(k = 0)$> 000> 0> 0> 0
    $S~(k = {\text{π} })$00> 0> 0> 0> 0
    ${\nu _{{\rm{peak}}}}$00ππ$(0, {\text{π}})$0
    下载: 导出CSV
    Baidu
  • [1]

    Bloch I, Dalibard J, Nascimbane S 2012 Nat. Phys. 8 267Google Scholar

    [2]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [3]

    Jaksch D, Zoller P 2005 Ann. Phys. 315 52Google Scholar

    [4]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [5]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [6]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [7]

    Nagy D, Konya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401Google Scholar

    [8]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [9]

    Mottl R, Brennecke F, Baumann K, Landig R, Donner T, Esslinger T 2012 Science 336 1570Google Scholar

    [10]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature 532 476Google Scholar

    [11]

    Lang J, Piazza F, Zwerger W 2017 New J. Phys. 19 123027Google Scholar

    [12]

    Caballero-Benitez S F, Mekhov I B 2015 Phys. Rev. Lett. 115 243604Google Scholar

    [13]

    Bakhtiari M R, Hemmerich A, Ritsch H, Thorwart M 2015 Phys. Rev. Lett. 114 123601Google Scholar

    [14]

    Dogra N, Brennecke F, Huber S D, Donner T 2016 Phys. Rev. A 94 023632Google Scholar

    [15]

    Niederle A E, Morigi G, Rieger H 2016 Phys. Rev. A 94 033607Google Scholar

    [16]

    Sundar B, Mueller E J 2016 Phys. Rev. A 94 033631Google Scholar

    [17]

    Chen Y, Yu Z, Zhai H 2016 Phys. Rev. A 93 041601(RGoogle Scholar

    [18]

    Panas J, Kauch A, Byczuk K 2017 Phys. Rev. B 95 115105Google Scholar

    [19]

    Flottat T, de Forges de Parny L, Hebert F, Rousseau V G, Batrouni G G 2017 Phys. Rev. B 95 144501Google Scholar

    [20]

    Bogner B, Danilo C D, Rieger H 2019 Eur. Phys. J. B 92 111Google Scholar

    [21]

    Boninsegni M, Prokofev N V 2012 Rev. Mod. Phys. 84 759Google Scholar

    [22]

    Leggett A J 1970 Phys. Rev. Lett. 25 1543Google Scholar

    [23]

    Otterlo A V, Wagenblast K H 1994 Phys. Rev. Lett. 72 3598Google Scholar

    [24]

    Batrouni G G, Scalettar R T, Zimanyi G T, Kampf A P 1995 Phys. Rev. Lett. 74 2527Google Scholar

    [25]

    Scalettar R T, Batrouni G G, Kampf A P, Zimanyi G T 1995 Phys. Rev. B 51 8467Google Scholar

    [26]

    Otterlo A V, Wagenblast K H, Baltin R, Bruder C, Fazio R, Schon G 1995 Phys. Rev. B 52 16176Google Scholar

    [27]

    Rossini D, Fazio R 2011 New J. Phys. 14 065012

    [28]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [29]

    Schollwok U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [30]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [31]

    Hodgman S S, Dall R G, Manning A G, Baldwin K G H, Truscott A G 2011 Science 331 1046Google Scholar

    [32]

    Liu H C 2016 Phys. Rev. A 94 023827Google Scholar

    [33]

    Schweigler T, Kasper V, Erne S, Mazets I, Rauer B, Cataldini F, Langen T, Gasenzer T, Berges J, Schmiedmayer J 2017 Nature 545 323Google Scholar

    [34]

    Hodgman S S, Khakimov R I, Truscott A G, Kheruntsyan K V 2017 Phys. Rev. Lett. 118 240402Google Scholar

    [35]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Leonard J, Greiner M 2019 Nature 573 385Google Scholar

    [36]

    Fan J, Zhou X, Zheng W, Yi W, Chen G, Jia S 2018 Phys. Rev. A 98 043613Google Scholar

    [37]

    Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E, Ketterle W 1999 Phys. Rev. Lett. 82 4569Google Scholar

    [38]

    Steinhauer J, Ozeri R, Katz N, Davidson N 2002 Phys. Rev. Lett. 88 120407Google Scholar

    [39]

    Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G, Greiner M 2016 Science 351 953Google Scholar

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变.  , 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩.  , 2024, 73(24): . doi: 10.7498/aps.73.20241103
    [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] 保安. 各向异性ruby晶格中费米子体系的Mott相变.  , 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [5] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变.  , 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [6] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2021, (): . doi: 10.7498/aps.70.20211433
    [7] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度.  , 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [8] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变.  , 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [9] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变.  , 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [10] 任杰, 顾利萍, 尤文龙. 带有三体相互作用的S=1自旋链中的保真率和纠缠熵.  , 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [11] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变.  , 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [12] 毛斌斌, 程晨, 陈富州, 罗洪刚. 一维扩展t-J模型中密度-自旋相互作用诱导的相分离.  , 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [13] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究.  , 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [14] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变.  , 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [15] 刘妮. 激光驱动下腔与玻色-爱因斯坦凝聚中的量子相变.  , 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [16] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图.  , 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [17] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变.  , 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [19] 张松俊, 蒋建军, 刘拥军. 阻挫诱导的亚铁磁性Heisenberg系统中的量子相变.  , 2008, 57(1): 531-534. doi: 10.7498/aps.57.531
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径.  , 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  5210
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 修回日期:  2021-05-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map