搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种200 kV的多功能脉冲辐射系统研制

吕泽琦 谢彦召 苟明岳 陈晓宇 周金山 李梅 周熠

引用本文:
Citation:

一种200 kV的多功能脉冲辐射系统研制

吕泽琦, 谢彦召, 苟明岳, 陈晓宇, 周金山, 李梅, 周熠

Development of 200 kV multi-function pulsed radiation system

Lü Ze-Qi, Xie Yan-Zhao, Gou Ming-Yue, Chen Xiao-Yu, Zhou Jin-Shan, Li Mei, Zhou Yi
PDF
HTML
导出引用
  • 研制了一套峰值电压200 kV的多功能脉冲辐射系统, 该系统具有产生脉冲电子束和脉冲X射线的功能, 在两种运行状态中可以灵活切换. 系统包括脉冲功率驱动源、真空二极管和实验腔体, 其中, 脉冲功率驱动源由Marx发生器、高储能的水介质传输线和脉冲压缩开关组成. 系统负载等效阻抗2 Ω、负载电流半高宽30 ns, 产生的脉冲电子束束流83 kA, 产生的脉冲X射线平均能量67 keV, 均匀性较好, 辐射场中的电子份额不超过0.02%. 为监测系统运行状态和输出指标, 建立了包括运行参数和效应参数的全套测量系统, 克服了强电磁场环境的干扰问题. 研制了法拉第筒用于脉冲电子束的测量, 既可以获得电子束的束流强度, 也可以获得电子束总能量. 脉冲X射线的测量系统包括能谱仪、剂量片、法拉第筒等, 实现了能谱、剂量、均匀性、X射线中电子份额等多参数的同时测量. 多功能脉冲辐射系统为脉冲功率技术、生物辐射效应、系统电磁脉冲效应等提供了一个多功能的实验平台.
    A multi-functional pulsed radiation system with a peak voltage of 200 kV, an impedance of 2 Ω, and a full width at half maximum (FWHM) of 30 ns is developed. The system can be switched flexibly in two states of generating pulsed electron beam and pulsed X-ray by changing the cathode and anode. It consists of a pulse power driving source, a vacuum diode, and an experimental cavity. A Marx generator, a high energy storage water transmission line, and two pulse compression switches are utilized to generate a high voltage on diode. An effector can be placed in the experimental cavity which has the same vacuum as diode. An insulation structure of transmission line and a diode are optimized to guide in system design. The system can provide a multi-functional experimental platform for investigating pulse power technology, system-generated electromagnetic pulse, biological radiation effect, etc. The Marx generator generates a high-voltage pulse with hundreds of nanoseconds in FWHM and hundreds of kilovolts in peak value. The pulse is compressed by the main switch and pulse forming switch and then loaded to the diode. Electrons are emitted from diode cathode under the high-voltage pulse and accelerated in the gap. The electrons are extracted directly or converted into X-ray through the anode. Aluminized polyethylene is used as an anode when pulsed electron beam is generated, and tantalum film is used when pulsed X-ray is generated. Working state can be switched by changing the cathode and anode of diode. The result shows that a current of 83 kA pulsed electron beam and an average energy of 67 keV X-ray are generated. Pulsed X-ray has good uniformity and low electron proportion (0.02%). In order to monitor the operation state and output parameter of the system comprehensively, a complete measurement system is established. Three capacitive voltage dividers are set at the beginning of transmission line, the end of pulse forming line, and the end of output line, while a B - dot current monitor is set at the diode. A Faraday cup is developed to measure the current intensity and the total energy of pulsed electron beam. For energy spectrum, dose and electron proportion, the measurement system composed of pulsed X-ray including spectrometric system, dose system and Rogowski Coil is build.
      通信作者: 谢彦召, yzxie@xjtu.edu.cn
      Corresponding author: Xie Yan-Zhao, yzxie@xjtu.edu.cn
    [1]

    王晶晶 2016 硕士学位论文 (杭州: 浙江大学)

    Wang J J 2016 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    王波, 刘海浪, 祁正伟, 张国培, 王小宇 2018 热加工工艺 47 19Google Scholar

    Wang B, Liu H L, Qi Z W, Zhang G P, Wang X Y 2018 Hot Working Technology 47 19Google Scholar

    [3]

    Ribiere M, Dortan F D G D, Delaunay R, Aubert D, Dalmeida T 2020 IEEE Trans. Nucl. Sci. 67 1722Google Scholar

    [4]

    Higgins D F, Lee K S H, Marin L 1978 IEEE Trans. Antennas Propag. 26 14Google Scholar

    [5]

    Chen J, Wang J, Tao Y, Chen Z, Wang Y, Niu S 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar

    [6]

    刘锡三 2007 高功率脉冲技术(北京: 国防工业出版社) 第178−183页

    Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp178−183 (in Chinese)

    [7]

    邱爱慈 2016 脉冲功率技术应用 (西安: 陕西科学出版社) 第39页

    Qiu A C 2016 Pulsed Power Technology Application (Xi’an: Shaanxi Science and Technology Press) p39 (in Chinese)

    [8]

    吴治华 1997 原子核物理实验方法 (北京: 原子能出版社) 第49页

    Wu Z H 1997 Experimental methods of nuclear physics (Beijing: Atomic Energy Press) p49 (in Chinese)

    [9]

    何辉, 禹海军, 王毅, 戴文华 2019 强激光与粒子束 31 125102Google Scholar

    He H, Yu H J, Wang Y, Dai W H 2019 High Pow. Las. Part. Beam. 31 125102Google Scholar

    [10]

    Manciu M, Manciu F S, Teodor V, Nes E, Waggener R G 2009 J. X-Ray Sci. Technol. 17 85Google Scholar

    [11]

    欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程 2002 51 1502Google Scholar

    Ouyang X P, Li Z F, Zhang G G, Huo Y K, Zhang Q M, Zhang X P, Song X C, Jia H Y, Lei J H, Sun Y C 2002 Acta Phys. Sin. 51 1502Google Scholar

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005Google Scholar

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Pow. Las. Part. Beam. 32 035005Google Scholar

    [13]

    苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟 2010 59 7729Google Scholar

    Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729Google Scholar

    [14]

    Baird L C 1981 Med. Phys. 8 319Google Scholar

    [15]

    Waggener R G, Blough M M, Terry J A, Chen D, Lee N E, Zhang S, McDavid W D 1999 Med. Phys. (Lancaster) 26 1269Google Scholar

    [16]

    来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实 2013 强激光与粒子束 25 1396Google Scholar

    Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S 2013 High Pow. Las. Part. Beam. 25 1396Google Scholar

    [17]

    Meng C, Xu Z, Jiang Y, Zheng W, Dang Z 2017 IEEE Trans. Nucl. Sci. 10 2618Google Scholar

    [18]

    Xu Z, Meng C, Jiang Y, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [19]

    周开明, 王艳, 邓建红 2014 强激光与粒子束 26 073207Google Scholar

    Zhou K M, Wang Y, Deng J H 2014 High Pow. Las. Part. Beam. 26 073207Google Scholar

    [20]

    马良, 程引会, 吴伟, 李进玺, 朱梦, 李宝忠, 赵墨, 郭景海 2012 强激光与粒子束 24 2915Google Scholar

    Ma L, Cheng Y H, Wu W, Li J X, Zhu M, Li B Z, Zhao M, Guo J H 2012 High Pow. Las. Part. Beam. 24 2915Google Scholar

    [21]

    Summa W J, Gullickson R L, Hebert M P, Rowley J E, Leon J F, Vitkovitsky I 1995 Pulsed Power Conference (New Mexico: Albuquerque)

    [22]

    Ware K D, Bell D E, Gullickson R L, Vitkovitsky I 2002 IEEE Trans. Plasma Sci. 30 1733Google Scholar

  • 图 1  多功能脉冲辐射系统结构示意图

    Fig. 1.  Schematic diagram of multi-function pulsed radiation system.

    图 2  传输线结构及电场分布 (a) 传输线结构图; (b) 电场分布

    Fig. 2.  Structure and electric field distribution of transmission line: (a) Structure of transmission line; (b) distribution of the electric field.

    图 3  脉冲功率驱动源和二极管的等效电路

    Fig. 3.  Equivalent circuit of pulse power source and diode.

    图 4  电路模拟结果

    Fig. 4.  Circuit simulation results.

    图 5  二极管结构及电场 (a)二极管结构; (b)二极管间隙电场

    Fig. 5.  Structure and electric field distribution of diode: (a) Structure of diode; (b) distribution of the electric field.

    图 6  二极管间隙电子图像 (a)电子初始发射; (b)电子大面积均匀发射

    Fig. 6.  Electron image of diode gap: (a) Initial emission; (b) large-area uniform emission.

    图 7  两种阴极结构及两种结构产生X射线的均匀性 (a)用于产生电子束的圆盘阴极; (b)用于产生X射线的双环阴极; (c)阳极靶后10 cm处由圆盘和圆环阴极产生X射线的均匀性

    Fig. 7.  Two kinds of cathode structure and the uniformity of X-ray: (a) Disk cathode for electron beam; (b) double-ring cathode for X-ray; (c) uniformity of X-ray generated by disk and ring cathode at 10 cm behind the anode.

    图 8  轫致辐射产生的光子总能量随钽靶厚度的变化

    Fig. 8.  Curve of photon energy by bremsstrahlung with tantalum target thickness.

    图 9  电子束流和总能量测量原理示意图

    Fig. 9.  Schematic diagram of electron beam current and total energy measurement.

    图 10  基于PIN的能谱测量系统

    Fig. 10.  Spectrometric system based on PIN.

    图 11  系统总体结构和测量探头布局

    Fig. 11.  Structure and probe layout of the system.

    图 12  脉冲电子束状态的电压、电流、束流波形

    Fig. 12.  Voltage, current and beam of pulsed electron beam.

    图 13  吸收体温度变化

    Fig. 13.  Absorber temperature.

    图 14  能谱仪测得波形

    Fig. 14.  Waveform measured by spectrometric system.

    图 15  计算得到PIN探测器中平均能量沉积

    Fig. 15.  Energy deposition averaged over PIN detector by calculated.

    图 16  解谱得到的X射线能谱

    Fig. 16.  X-ray spectrum by spectrum unfolding.

    图 17  剂量随半径分布

    Fig. 17.  Distribution of dose with radius.

    图 18  辐射场内电子电流波形

    Fig. 18.  Current in radiation field.

    Baidu
  • [1]

    王晶晶 2016 硕士学位论文 (杭州: 浙江大学)

    Wang J J 2016 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    王波, 刘海浪, 祁正伟, 张国培, 王小宇 2018 热加工工艺 47 19Google Scholar

    Wang B, Liu H L, Qi Z W, Zhang G P, Wang X Y 2018 Hot Working Technology 47 19Google Scholar

    [3]

    Ribiere M, Dortan F D G D, Delaunay R, Aubert D, Dalmeida T 2020 IEEE Trans. Nucl. Sci. 67 1722Google Scholar

    [4]

    Higgins D F, Lee K S H, Marin L 1978 IEEE Trans. Antennas Propag. 26 14Google Scholar

    [5]

    Chen J, Wang J, Tao Y, Chen Z, Wang Y, Niu S 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar

    [6]

    刘锡三 2007 高功率脉冲技术(北京: 国防工业出版社) 第178−183页

    Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp178−183 (in Chinese)

    [7]

    邱爱慈 2016 脉冲功率技术应用 (西安: 陕西科学出版社) 第39页

    Qiu A C 2016 Pulsed Power Technology Application (Xi’an: Shaanxi Science and Technology Press) p39 (in Chinese)

    [8]

    吴治华 1997 原子核物理实验方法 (北京: 原子能出版社) 第49页

    Wu Z H 1997 Experimental methods of nuclear physics (Beijing: Atomic Energy Press) p49 (in Chinese)

    [9]

    何辉, 禹海军, 王毅, 戴文华 2019 强激光与粒子束 31 125102Google Scholar

    He H, Yu H J, Wang Y, Dai W H 2019 High Pow. Las. Part. Beam. 31 125102Google Scholar

    [10]

    Manciu M, Manciu F S, Teodor V, Nes E, Waggener R G 2009 J. X-Ray Sci. Technol. 17 85Google Scholar

    [11]

    欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程 2002 51 1502Google Scholar

    Ouyang X P, Li Z F, Zhang G G, Huo Y K, Zhang Q M, Zhang X P, Song X C, Jia H Y, Lei J H, Sun Y C 2002 Acta Phys. Sin. 51 1502Google Scholar

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005Google Scholar

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Pow. Las. Part. Beam. 32 035005Google Scholar

    [13]

    苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟 2010 59 7729Google Scholar

    Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729Google Scholar

    [14]

    Baird L C 1981 Med. Phys. 8 319Google Scholar

    [15]

    Waggener R G, Blough M M, Terry J A, Chen D, Lee N E, Zhang S, McDavid W D 1999 Med. Phys. (Lancaster) 26 1269Google Scholar

    [16]

    来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实 2013 强激光与粒子束 25 1396Google Scholar

    Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S 2013 High Pow. Las. Part. Beam. 25 1396Google Scholar

    [17]

    Meng C, Xu Z, Jiang Y, Zheng W, Dang Z 2017 IEEE Trans. Nucl. Sci. 10 2618Google Scholar

    [18]

    Xu Z, Meng C, Jiang Y, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [19]

    周开明, 王艳, 邓建红 2014 强激光与粒子束 26 073207Google Scholar

    Zhou K M, Wang Y, Deng J H 2014 High Pow. Las. Part. Beam. 26 073207Google Scholar

    [20]

    马良, 程引会, 吴伟, 李进玺, 朱梦, 李宝忠, 赵墨, 郭景海 2012 强激光与粒子束 24 2915Google Scholar

    Ma L, Cheng Y H, Wu W, Li J X, Zhu M, Li B Z, Zhao M, Guo J H 2012 High Pow. Las. Part. Beam. 24 2915Google Scholar

    [21]

    Summa W J, Gullickson R L, Hebert M P, Rowley J E, Leon J F, Vitkovitsky I 1995 Pulsed Power Conference (New Mexico: Albuquerque)

    [22]

    Ware K D, Bell D E, Gullickson R L, Vitkovitsky I 2002 IEEE Trans. Plasma Sci. 30 1733Google Scholar

  • [1] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理.  , 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [3] 刘振帮, 金晓, 黄华, 王腾钫, 李士锋. 吉瓦级强流相对论多注电子束二极管的优化设计与实验研究.  , 2021, 70(3): 038401. doi: 10.7498/aps.70.20201336
    [4] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计.  , 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络.  , 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [6] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管.  , 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [7] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究.  , 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [8] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性.  , 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [9] 郭春生, 王琳, 翟玉卫, 李睿, 冯士维, 朱慧. 瞬态大电流测量结温中校温曲线弯曲现象的研究.  , 2015, 64(18): 184704. doi: 10.7498/aps.64.184704
    [10] 王天舒, 张瑞德, 关哲, 巴柯, 俎云霄. 忆阻元件与RLC以及二极管串并联电路的特性研究.  , 2014, 63(17): 178101. doi: 10.7498/aps.63.178101
    [11] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响.  , 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [12] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生.  , 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [13] 王秀梅, 何济洲, 何弦, 肖宇玲. 非线性二极管系统构成的不可逆热机性能特征分析.  , 2010, 59(7): 4460-4465. doi: 10.7498/aps.59.4460
    [14] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应.  , 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [15] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究.  , 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [16] 孙可煦, 江少恩, 易荣清, 崔延莉, 丁永坤, 刘慎业. X射线二极管时间特性研究.  , 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [17] 张永辉, 马乔生, 向 飞, 甘延青, 常安碧, 刘 忠, 周传明. 重复脉冲强流电子束传输技术研究.  , 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [18] 刘志坚, 江兴流, 乐小云, 文雄伟. 赝火花脉冲电子束传输中束斑分析.  , 2005, 54(9): 4229-4235. doi: 10.7498/aps.54.4229
    [19] 刘 鲁, 范广涵, 廖常俊, 曹明德, 陈贵楚, 陈练辉. AlGaInP四元系材料渐变异质结及其在高亮度发光二级管器件中的应用.  , 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
    [20] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究.  , 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
计量
  • 文章访问数:  3865
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-24
  • 上网日期:  2021-10-05
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map