-
研制了一套峰值电压200 kV的多功能脉冲辐射系统, 该系统具有产生脉冲电子束和脉冲X射线的功能, 在两种运行状态中可以灵活切换. 系统包括脉冲功率驱动源、真空二极管和实验腔体, 其中, 脉冲功率驱动源由Marx发生器、高储能的水介质传输线和脉冲压缩开关组成. 系统负载等效阻抗2 Ω、负载电流半高宽30 ns, 产生的脉冲电子束束流83 kA, 产生的脉冲X射线平均能量67 keV, 均匀性较好, 辐射场中的电子份额不超过0.02%. 为监测系统运行状态和输出指标, 建立了包括运行参数和效应参数的全套测量系统, 克服了强电磁场环境的干扰问题. 研制了法拉第筒用于脉冲电子束的测量, 既可以获得电子束的束流强度, 也可以获得电子束总能量. 脉冲X射线的测量系统包括能谱仪、剂量片、法拉第筒等, 实现了能谱、剂量、均匀性、X射线中电子份额等多参数的同时测量. 多功能脉冲辐射系统为脉冲功率技术、生物辐射效应、系统电磁脉冲效应等提供了一个多功能的实验平台.
A multi-functional pulsed radiation system with a peak voltage of 200 kV, an impedance of 2 Ω, and a full width at half maximum (FWHM) of 30 ns is developed. The system can be switched flexibly in two states of generating pulsed electron beam and pulsed X-ray by changing the cathode and anode. It consists of a pulse power driving source, a vacuum diode, and an experimental cavity. A Marx generator, a high energy storage water transmission line, and two pulse compression switches are utilized to generate a high voltage on diode. An effector can be placed in the experimental cavity which has the same vacuum as diode. An insulation structure of transmission line and a diode are optimized to guide in system design. The system can provide a multi-functional experimental platform for investigating pulse power technology, system-generated electromagnetic pulse, biological radiation effect, etc. The Marx generator generates a high-voltage pulse with hundreds of nanoseconds in FWHM and hundreds of kilovolts in peak value. The pulse is compressed by the main switch and pulse forming switch and then loaded to the diode. Electrons are emitted from diode cathode under the high-voltage pulse and accelerated in the gap. The electrons are extracted directly or converted into X-ray through the anode. Aluminized polyethylene is used as an anode when pulsed electron beam is generated, and tantalum film is used when pulsed X-ray is generated. Working state can be switched by changing the cathode and anode of diode. The result shows that a current of 83 kA pulsed electron beam and an average energy of 67 keV X-ray are generated. Pulsed X-ray has good uniformity and low electron proportion (0.02%). In order to monitor the operation state and output parameter of the system comprehensively, a complete measurement system is established. Three capacitive voltage dividers are set at the beginning of transmission line, the end of pulse forming line, and the end of output line, while a B - dot current monitor is set at the diode. A Faraday cup is developed to measure the current intensity and the total energy of pulsed electron beam. For energy spectrum, dose and electron proportion, the measurement system composed of pulsed X-ray including spectrometric system, dose system and Rogowski Coil is build. -
Keywords:
- multi-function /
- diode /
- pulsed electron beam /
- pulsed X-ray
[1] 王晶晶 2016 硕士学位论文 (杭州: 浙江大学)
Wang J J 2016 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)
[2] 王波, 刘海浪, 祁正伟, 张国培, 王小宇 2018 热加工工艺 47 19Google Scholar
Wang B, Liu H L, Qi Z W, Zhang G P, Wang X Y 2018 Hot Working Technology 47 19Google Scholar
[3] Ribiere M, Dortan F D G D, Delaunay R, Aubert D, Dalmeida T 2020 IEEE Trans. Nucl. Sci. 67 1722Google Scholar
[4] Higgins D F, Lee K S H, Marin L 1978 IEEE Trans. Antennas Propag. 26 14Google Scholar
[5] Chen J, Wang J, Tao Y, Chen Z, Wang Y, Niu S 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar
[6] 刘锡三 2007 高功率脉冲技术(北京: 国防工业出版社) 第178−183页
Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp178−183 (in Chinese)
[7] 邱爱慈 2016 脉冲功率技术应用 (西安: 陕西科学出版社) 第39页
Qiu A C 2016 Pulsed Power Technology Application (Xi’an: Shaanxi Science and Technology Press) p39 (in Chinese)
[8] 吴治华 1997 原子核物理实验方法 (北京: 原子能出版社) 第49页
Wu Z H 1997 Experimental methods of nuclear physics (Beijing: Atomic Energy Press) p49 (in Chinese)
[9] 何辉, 禹海军, 王毅, 戴文华 2019 强激光与粒子束 31 125102Google Scholar
He H, Yu H J, Wang Y, Dai W H 2019 High Pow. Las. Part. Beam. 31 125102Google Scholar
[10] Manciu M, Manciu F S, Teodor V, Nes E, Waggener R G 2009 J. X-Ray Sci. Technol. 17 85Google Scholar
[11] 欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程 2002 51 1502Google Scholar
Ouyang X P, Li Z F, Zhang G G, Huo Y K, Zhang Q M, Zhang X P, Song X C, Jia H Y, Lei J H, Sun Y C 2002 Acta Phys. Sin. 51 1502Google Scholar
[12] 苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005Google Scholar
Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Pow. Las. Part. Beam. 32 035005Google Scholar
[13] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟 2010 59 7729Google Scholar
Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729Google Scholar
[14] Baird L C 1981 Med. Phys. 8 319Google Scholar
[15] Waggener R G, Blough M M, Terry J A, Chen D, Lee N E, Zhang S, McDavid W D 1999 Med. Phys. (Lancaster) 26 1269Google Scholar
[16] 来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实 2013 强激光与粒子束 25 1396Google Scholar
Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S 2013 High Pow. Las. Part. Beam. 25 1396Google Scholar
[17] Meng C, Xu Z, Jiang Y, Zheng W, Dang Z 2017 IEEE Trans. Nucl. Sci. 10 2618Google Scholar
[18] Xu Z, Meng C, Jiang Y, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar
[19] 周开明, 王艳, 邓建红 2014 强激光与粒子束 26 073207Google Scholar
Zhou K M, Wang Y, Deng J H 2014 High Pow. Las. Part. Beam. 26 073207Google Scholar
[20] 马良, 程引会, 吴伟, 李进玺, 朱梦, 李宝忠, 赵墨, 郭景海 2012 强激光与粒子束 24 2915Google Scholar
Ma L, Cheng Y H, Wu W, Li J X, Zhu M, Li B Z, Zhao M, Guo J H 2012 High Pow. Las. Part. Beam. 24 2915Google Scholar
[21] Summa W J, Gullickson R L, Hebert M P, Rowley J E, Leon J F, Vitkovitsky I 1995 Pulsed Power Conference (New Mexico: Albuquerque)
[22] Ware K D, Bell D E, Gullickson R L, Vitkovitsky I 2002 IEEE Trans. Plasma Sci. 30 1733Google Scholar
-
图 7 两种阴极结构及两种结构产生X射线的均匀性 (a)用于产生电子束的圆盘阴极; (b)用于产生X射线的双环阴极; (c)阳极靶后10 cm处由圆盘和圆环阴极产生X射线的均匀性
Fig. 7. Two kinds of cathode structure and the uniformity of X-ray: (a) Disk cathode for electron beam; (b) double-ring cathode for X-ray; (c) uniformity of X-ray generated by disk and ring cathode at 10 cm behind the anode.
-
[1] 王晶晶 2016 硕士学位论文 (杭州: 浙江大学)
Wang J J 2016 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)
[2] 王波, 刘海浪, 祁正伟, 张国培, 王小宇 2018 热加工工艺 47 19Google Scholar
Wang B, Liu H L, Qi Z W, Zhang G P, Wang X Y 2018 Hot Working Technology 47 19Google Scholar
[3] Ribiere M, Dortan F D G D, Delaunay R, Aubert D, Dalmeida T 2020 IEEE Trans. Nucl. Sci. 67 1722Google Scholar
[4] Higgins D F, Lee K S H, Marin L 1978 IEEE Trans. Antennas Propag. 26 14Google Scholar
[5] Chen J, Wang J, Tao Y, Chen Z, Wang Y, Niu S 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar
[6] 刘锡三 2007 高功率脉冲技术(北京: 国防工业出版社) 第178−183页
Liu X S 2007 High Pulsed Power Technology (Beijing: National Defense Industry Press) pp178−183 (in Chinese)
[7] 邱爱慈 2016 脉冲功率技术应用 (西安: 陕西科学出版社) 第39页
Qiu A C 2016 Pulsed Power Technology Application (Xi’an: Shaanxi Science and Technology Press) p39 (in Chinese)
[8] 吴治华 1997 原子核物理实验方法 (北京: 原子能出版社) 第49页
Wu Z H 1997 Experimental methods of nuclear physics (Beijing: Atomic Energy Press) p49 (in Chinese)
[9] 何辉, 禹海军, 王毅, 戴文华 2019 强激光与粒子束 31 125102Google Scholar
He H, Yu H J, Wang Y, Dai W H 2019 High Pow. Las. Part. Beam. 31 125102Google Scholar
[10] Manciu M, Manciu F S, Teodor V, Nes E, Waggener R G 2009 J. X-Ray Sci. Technol. 17 85Google Scholar
[11] 欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程 2002 51 1502Google Scholar
Ouyang X P, Li Z F, Zhang G G, Huo Y K, Zhang Q M, Zhang X P, Song X C, Jia H Y, Lei J H, Sun Y C 2002 Acta Phys. Sin. 51 1502Google Scholar
[12] 苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005Google Scholar
Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Pow. Las. Part. Beam. 32 035005Google Scholar
[13] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟 2010 59 7729Google Scholar
Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729Google Scholar
[14] Baird L C 1981 Med. Phys. 8 319Google Scholar
[15] Waggener R G, Blough M M, Terry J A, Chen D, Lee N E, Zhang S, McDavid W D 1999 Med. Phys. (Lancaster) 26 1269Google Scholar
[16] 来定国, 张永民, 李进玺, 苏兆峰, 张玉英, 任书庆, 杨莉, 杨实 2013 强激光与粒子束 25 1396Google Scholar
Lai D G, Zhang Y M, Li J X, Su Z F, Zhang Y Y, Ren S Q, Yang L, Yang S 2013 High Pow. Las. Part. Beam. 25 1396Google Scholar
[17] Meng C, Xu Z, Jiang Y, Zheng W, Dang Z 2017 IEEE Trans. Nucl. Sci. 10 2618Google Scholar
[18] Xu Z, Meng C, Jiang Y, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar
[19] 周开明, 王艳, 邓建红 2014 强激光与粒子束 26 073207Google Scholar
Zhou K M, Wang Y, Deng J H 2014 High Pow. Las. Part. Beam. 26 073207Google Scholar
[20] 马良, 程引会, 吴伟, 李进玺, 朱梦, 李宝忠, 赵墨, 郭景海 2012 强激光与粒子束 24 2915Google Scholar
Ma L, Cheng Y H, Wu W, Li J X, Zhu M, Li B Z, Zhao M, Guo J H 2012 High Pow. Las. Part. Beam. 24 2915Google Scholar
[21] Summa W J, Gullickson R L, Hebert M P, Rowley J E, Leon J F, Vitkovitsky I 1995 Pulsed Power Conference (New Mexico: Albuquerque)
[22] Ware K D, Bell D E, Gullickson R L, Vitkovitsky I 2002 IEEE Trans. Plasma Sci. 30 1733Google Scholar
计量
- 文章访问数: 3865
- PDF下载量: 53
- 被引次数: 0