-
电磁等离子体加速器可产生高密度高速度等离子体射流, 因此广泛应用于核物理与天体物理等领域. 本文建立了平行轨道加速器电磁驱动等离子体实验平台, 通过磁探头、光谱仪研究了不同放电电流和注气量条件下平行轨道加速器的放电模式. 平行轨道加速器驱动电源为正弦振荡衰减波电源, 总电容为120 μF, 回路总电感约为400 nH. 快速气阀电流波形为单脉冲双指数波形. 当放电电流为40 kA时, 平行轨道加速器的工作模式为雪犁模式. 随着放电电流的增大, 平行轨道加速器出现爆燃模式, 且电流通道后沿在电流上升阶段固定不动, 而在电流下降阶段开始向轨道末端移动. 注气量越大, 平行轨道加速器电流通道前沿速度越慢, 电流分布越集中, 放电模式越趋向于雪犁模式. 工作参数主要影响轨道两端的电压, 从而影响平行轨道加速器的放电模式.Electromagnetic plasma accelerators which can generate hypervelocity and high density plasma jets have been widely used in the fields of nuclear physics and astrophysics. In this paper, an experimental platform of parallel-rail accelerator electromagnetically driven plasma is established, and the discharge modes under different discharge currents and gas injection conditions are studied through using magnetic probes, a spectrometer and an ICCD. A fast gas valve is used to inject argon into the rail electrode area. The time delay between the fast valve discharge and the parallel-rail accelerator discharge is fixed to be 450 μs. The waveform of power supply of the parallel-rail accelerator is a sinusoidal wave. The total capacitance is 120 μF, the total inductance is about 400 nH, and the maximum current is 170 kA. The fast valve current waveform is a double exponential waveform with a maximum current of 2.5 kA. When the discharge current is 40 kA, a current sheet with a certain thickness is generated, and the current sheet moves through different detection positions along the rail electrode at a certain velocity. Therefore, the working mode of the parallel-rail accelerator is the snowplow mode. As the discharge current increases, the trailing edge of the current channel is fixed during the current rising phase, and starts to move to the end of the rail during the current falling phase. A diffuse distributed current channel is formed, and the parallel-rail accelerator operates in a deflagration mode. As the gas injection mass increases, the current channel front velocity decreases to form a more concentrated distributed current channel, and the discharge mode turns into the snowplow mode. The stationary current channel in the deflagration mode is maintained mainly by ablating the electrode. The operating parameters mainly affect the rail voltage, which in turn affects the discharge mode of the parallel-rail accelerator. The rail voltage increases when the discharge current or the current rate of change increases. If the rail gap behind the current channel cannot withstand the high rail voltage under large discharge current or large current rate of change, the breakdown occurs, which results in the deflagration mode discharge.
-
Keywords:
- parallel-rail /
- current /
- snowplow mode /
- deflagration mode
[1] Ziemer J K, Choueiri E Y 2001 Plasma Sources Sci. Technol. 10 395Google Scholar
[2] Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar
[3] Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar
[4] 蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 63 019401Google Scholar
Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar
[5] Ticos C M, Scurtu A, Toader D, Banu N 2015 Rev. Sci. Instrum. 86 033509Google Scholar
[6] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar
Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar
[7] Underwood T C, Loebner K T K, Cappelli M A 2017 High Energy Density Phys. 23 73Google Scholar
[8] Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar
[9] Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar
[10] Hsu S C, Langendorf S J, Yates K C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Gilmore M A, Cassibry J T, Samulyak R, Stoltz P, Schillo K, Shih W, Beckwith K, Thio Y C F 2018 IEEE Trans. Plasma Sci. 46 1951Google Scholar
[11] Thio Y C F, Hsu S C, Witherspoon F D, Cruz E, Case A, Langendorf S, Yates K, Dunn J, Cassibry J, Samulyak R, Stoltz P, Brockington S J, Williams A, Luna M, Becker R, Cook A 2019 Fusion Sci. Technol. 75 581Google Scholar
[12] Yate K C, Langendorf S J, Hsu S C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Thio Y C F, Cassibry J T, Schillo K, Gilmore M 2020 Phys. Plasmas 27 062706Google Scholar
[13] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar
[14] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar
[15] Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar
[16] Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar
[17] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar
Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar
[18] Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 123508Google Scholar
[19] Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar
[20] Loebner K T K, Underwood T C, Cappelli M A 2015 Phys. Rev. Lett. 115 175001Google Scholar
[21] Loebner K T K, Underwood T C, Mouratidis T, Cappelli M A 2016 Appl. Phys. Lett. 108 094104Google Scholar
[22] Subramaniam V, Panneerchelvam P, Raja L L 2018 J. Phys. D:Appl. Phys. 51 215203Google Scholar
[23] Sitaraman H, Raja L L 2014 Phys. Plasmas 21 012104Google Scholar
[24] Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar
[25] Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma Sources Sci. Technol. 27 025016Google Scholar
[26] Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar
[27] Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar
[28] Huba J D 2013 NRL Plasma Formulary (Washington: Naval Research Laboratory)
[29] Xiao D M 2016 Gas Discharge and Gas Insulation (Shanghai: Shanghai Jiao Tong University Press) pp47–88
-
-
[1] Ziemer J K, Choueiri E Y 2001 Plasma Sources Sci. Technol. 10 395Google Scholar
[2] Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar
[3] Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar
[4] 蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 63 019401Google Scholar
Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar
[5] Ticos C M, Scurtu A, Toader D, Banu N 2015 Rev. Sci. Instrum. 86 033509Google Scholar
[6] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar
Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar
[7] Underwood T C, Loebner K T K, Cappelli M A 2017 High Energy Density Phys. 23 73Google Scholar
[8] Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar
[9] Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar
[10] Hsu S C, Langendorf S J, Yates K C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Gilmore M A, Cassibry J T, Samulyak R, Stoltz P, Schillo K, Shih W, Beckwith K, Thio Y C F 2018 IEEE Trans. Plasma Sci. 46 1951Google Scholar
[11] Thio Y C F, Hsu S C, Witherspoon F D, Cruz E, Case A, Langendorf S, Yates K, Dunn J, Cassibry J, Samulyak R, Stoltz P, Brockington S J, Williams A, Luna M, Becker R, Cook A 2019 Fusion Sci. Technol. 75 581Google Scholar
[12] Yate K C, Langendorf S J, Hsu S C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Thio Y C F, Cassibry J T, Schillo K, Gilmore M 2020 Phys. Plasmas 27 062706Google Scholar
[13] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar
[14] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar
[15] Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar
[16] Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar
[17] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar
Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar
[18] Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 123508Google Scholar
[19] Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar
[20] Loebner K T K, Underwood T C, Cappelli M A 2015 Phys. Rev. Lett. 115 175001Google Scholar
[21] Loebner K T K, Underwood T C, Mouratidis T, Cappelli M A 2016 Appl. Phys. Lett. 108 094104Google Scholar
[22] Subramaniam V, Panneerchelvam P, Raja L L 2018 J. Phys. D:Appl. Phys. 51 215203Google Scholar
[23] Sitaraman H, Raja L L 2014 Phys. Plasmas 21 012104Google Scholar
[24] Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar
[25] Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma Sources Sci. Technol. 27 025016Google Scholar
[26] Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar
[27] Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar
[28] Huba J D 2013 NRL Plasma Formulary (Washington: Naval Research Laboratory)
[29] Xiao D M 2016 Gas Discharge and Gas Insulation (Shanghai: Shanghai Jiao Tong University Press) pp47–88
计量
- 文章访问数: 3990
- PDF下载量: 40
- 被引次数: 0