搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不可压Navier-Stokes方程的投影方法

张庆海 李阳

引用本文:
Citation:

不可压Navier-Stokes方程的投影方法

张庆海, 李阳

Projection methods for the incompressible Navier-Stokes equations

Zhang Qing-Hai, Li Yang
PDF
HTML
导出引用
  • 不可压Navier-Stokes方程是流体力学的基本控制方程, 其高精度数值模拟具有重要的科学意义. 本综述性文章回顾了求解Navier-Stokes方程的投影方法, 重点介绍了时空一致四阶精度的GePUP方法. 该方法用一个广义投影算子对不可压Navier-Stokes方程进行了重新表述, 使得投影流速的散度由一个热方程控制, 保持了UPPE方法的优点. 与UPPE方法不同的是, GePUP方法的推导不依赖于Leray-Helmholtz投影算子的各种性质, 并且GePUP表述中的演化变量无需满足散度为零的条件, 因此数值近似Leray-Helmholtz投影算子的误差对精度和稳定性的影响非常透明. 在GePUP方法中, 时间积分和空间离散是完全解耦的, 因此对这两个模块都能以“黑匣子”的方式自由替换. 时间积分模块的灵活性实现了时间上的高阶精度, 并使得GePUP算法能同时适用于低雷诺数流体和高雷诺数流体. 空间离散模块的灵活性使得GePUP算法能很好地适应不规则边界. 理论分析和数值测试结果都显示, 相对于二阶投影方法, GePUP方法无论在精度上还是效率上都具有巨大优势.
    The incompressible Navier-Stokes equations (INSE) are the basic governing equations of fluid dynamics, and their numerical solutions are of great significance. In this review paper, we first recollect some classical projection methods and their relatives in the past 50 years and then fully explain the recent fourth-order projection method called GePUP [Zhang Q 2016 J. Sci. Comput. 67 1134]. Based on a generic projection operator and the UPPE formulation of the INSE [Liu J G, Liu J, Pego R L 2007 Comm. Pure Appl. Math. 60 1443], we derive the GePUP equations, which retain the advantage of UPPE that the velocity divergence is governed by a heat equation and is thus well under control. In comparison with UPPE, the GePUP formulation is advantageous in three aspects: (1) its derivation depends on none of the properties of the Leray-Helmholtz projection; (2) the evolutionary velocity can be divergent, thus it is directly applicable to numerical calculations with nonzero velocity divergence; (3) the Leray-Helmholtz projection does appear on the right-hand sides of the governing equations, thus making it transparent to analyze the accuracy and stability issues raised by numerically approximating the Leray-Helmholtz projection. As the most appealing feature of GePUP, temporal integration and spatial discretization are completely decoupled and can be treated as black boxes, so that the user can choose his favorite methods for the two parts to form his own GePUP method. In particular, high-order accuracy in time can be easily obtained since no internal details of the ODE solver are needed. The flexibility in time makes the GePUP method applicable to both low-Reynolds-number flow and high-Reynolds-number flow. The flexibility in space makes the GePUP method applicable to both rectangular boxes and irregular domains. The numerical results and elementary analysis show that the fourth-order GePUP method may be much more accurate and efficient than classical second-order projection methods by many orders of magnitude.
      通信作者: 张庆海, qinghai@zju.edu.cn
      作者简介:
      张庆海, 清华大学学士及硕士, 美国康奈尔大学(Cornell University)博士. 曾在美国劳伦斯伯克利国家实验室(Lawrence Berkeley National Lab)从事博士后研究并曾在美国犹他大学(University of Utah)数学系担任科研助理教授. 2015年获得国家级青年人才项目支持, 2016年初任浙江大学数学学院教授. 主要研究方向为动边界不可压流体的理论建模和数值计算, 工作聚焦点为界面追踪和高阶有限体积方法. 研究的核心理念是在界面问题中充分运用几何和拓扑的手段来解决几何和拓扑的问题. 代表性工作有: 建立了一个界面追踪及其数值方法的理论分析框架, 提出了四阶及以上精度的界面追踪和曲率估计算法, 并发展了一系列时空一致四阶精度的并行自适应有限体积法. 在SIAM Review, Mathematics of Computation, SIAM Journal on Numerical Analysis, SIAM Journal on Scientific Computing, PNAS, Journal of Computational Physics, Computer Methods in Applied Mechanics and Engineering 等学术刊物上发表论文30多篇
    • 基金项目: 国家自然科学基金创新研究群体项目(批准号: 11621101)和国家自然科学基金(批准号: 11871429)资助的课题
      Corresponding author: Zhang Qing-Hai, qinghai@zju.edu.cn
    • Funds: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 11621101) and the National Natural Science Foundation of China (Grant No. 11871429)
    [1]

    Smale S 1998 Mathematical Intelligencer 20 7Google Scholar

    [2]

    Devlin K 2005 The Millennium Problems: the Seven Greatest Unsolved Mathematical Puzzles of Our Time (Granta Books) pp103−136

    [3]

    Carlson J, Jaffe A, Wiles A, Editors 2006 The Millennium Prize Problems (American Mathematical Society) pp57−67

    [4]

    Zhang Q 2014 Appl. Numer. Math. 77 16Google Scholar

    [5]

    Zhang Q 2016 J. Sci. Comput. 67 1134Google Scholar

    [6]

    Bell J B, Colella P, Glaz H M 1989 J. Comput. Phys. 85 257Google Scholar

    [7]

    Martin D F, Colella P, Graves D 2008 J. Comput. Phys. 227 1863Google Scholar

    [8]

    Taylor M E 2011 Partial Differential Equations I. No. 115 in Applied Mathematical Sciences (2nd Ed.) (Springer) pp408−409

    [9]

    Sanderse B, Koren B 2012 J. Comput. Phys. 231 3041Google Scholar

    [10]

    Griffth B E 2009 J. Comput. Phys. 228 7565Google Scholar

    [11]

    Benzi M, Golub G H, Liesen J 2005 Acta Numer. 14 1Google Scholar

    [12]

    Chorin A J 1968 Math. Comput. 22 745Google Scholar

    [13]

    Kim J, Moin P 1985 J. Comput. Phys. 59 308Google Scholar

    [14]

    Orszag S A, Israeli M, Deville M O 1986 J. Sci. Comput. 1 75Google Scholar

    [15]

    Weinan E, Liu J G 2003 Comm. Math. Sci. 1 317Google Scholar

    [16]

    Guermond J L, Minev P, Shen J 2006 Comput. Methods Appl. Mech. Engrgy 195 6011Google Scholar

    [17]

    Brown D L, Cortez R, Minion M L 2001 J. Comput. Phys. 168 464Google Scholar

    [18]

    Kleiser L, Schumann U 1980 Proceedings of the Third GAMM-Conference on Numerical Methods in Fluid Mechanics, vol. 2 of Notes on Numerical Fluid Mechanics (Springer) pp 165−173

    [19]

    Gresho P M, Sani R L 1987 Int. J. Numer. Methods Fluids 7 1115Google Scholar

    [20]

    Henshaw W D 1994 J. Comput. Phys. 113 13Google Scholar

    [21]

    Johnston H, Liu J G 2004 J. Comput. Phys. 199 221Google Scholar

    [22]

    Liu J G, Liu J, Pego R L 2007 Commun. Pure Appl. Math. 60 1443Google Scholar

    [23]

    Liu J G, Liu J, Pego R L 2010 J. Comput. Phys. 229 3428Google Scholar

    [24]

    Shirokoff D, Rosales R R 2011 J. Comput. Phys. 230 8619Google Scholar

    [25]

    Zhang Q, Johansen H, Colella P 2012 SIAM J. Sci. Comput. 34 B179Google Scholar

    [26]

    Li Z, Zhang Q 2021 submitted for publication

    [27]

    Zhang Q, Li Z 2021 submitted for publication

    [28]

    Ascher U M, Ruuth S J, Spiteri R J 1997 Appl. Numer. Math. 25 151Google Scholar

    [29]

    Kennedy C A, Carpenter M H 2003 Appl. Numer. Math. 44 139Google Scholar

    [30]

    Briggs W L, Henson V E, McCormick S F 2000 A Multigrid Tutorial (2nd Ed.) (SIAM) pp 31−43

    [31]

    Brandt A 1986 Appl. Math. Comput. 19 23Google Scholar

    [32]

    Trottenberg U, Oosterlee C, Schuller A 2001 Multigrid (Elsevier Academic Press) pp439−441

    [33]

    Shankar P N, Deshpande M D 2000 Annu. Rev. Fluid Mech. 32 93Google Scholar

    [34]

    Guermond J L, Migeon C, Pineau G, Quartapelle L 2002 J. Fluid. Mech. 450 169Google Scholar

    [35]

    Verstappen R, Veldman A 1997 J. Eng. Math. 32 143Google Scholar

    [36]

    Hokpunna A, Manhart M 2010 J. Comput. Phys. 229 7545Google Scholar

    [37]

    Almgren A, Aspden A, Bell J B, Minion M L 2013 SIAM J. Sci. Comput. 35 B25Google Scholar

    [38]

    Gullbrand J 2000 An Evaluation of a Conservative Fourth Order DNS Code in Turbulent Channel Center for Turbulence Research, Stanford University

    [39]

    Shishkina O, Wagner C 2007 Comput. Fluids 36 484Google Scholar

    [40]

    Knikker R 2009 Int. J. Numer. Methods Fluids 59 1063Google Scholar

    [41]

    Adams M, Colella P, Graves D T, Johnson J, Keen N, Ligocki T J, Martin D F, McCorquodale P, Modiano D, Schwartz P, Sternberg T, Straalen B V 2014 Chombo Software Package for AMR Applications-Design Document Lawrence Berkeley National Laboratory. LBNL-6616 E

    [42]

    Chombo http://seesar.lbl.gov/ANAG/software.html. Version 3.2

    [43]

    Meuer H, Strohmaier E, Dongarra J, Simon H http://www.top500.org [2020-11-25]

    [44]

    Zhang Q, Fogelson A 2016 SIAM J. Numer. Anal. 54 530Google Scholar

    [45]

    Zhang Q 2018 SIAM J. Sci. Comput. 40 A3755Google Scholar

  • 图 1  面平均值和控制体平均值. 面平均值用带$ \left\langle {\cdot} \right\rangle $且下标为分数的符号表示, 而控制体平均值对应下标为整数. 因此 $ \left\langle {\phi} \right\rangle_{ {{i}}+\frac{1}{2} {{e}}^0} $, $ \left\langle {\phi} \right\rangle_{ {{i}}- {{e}}^0+\frac{1}{2} {{e}}^1} $$ \left\langle {u_0} \right\rangle_{ {{i}}+\frac{3}{2} {{e}}^0 + {{e}}^1} $表示面平均值, 而$ \left\langle {\phi} \right\rangle_{ {{i}}} $是控制体平均值[5]

    Fig. 1.  Notation of face-averaged and cell-averaged values. A symbol with angled brackets denotes either a cell-averaged value if the subscript is an integer multi-index, or a face-averaged value if the subscript is a fractional multi-index. Hence $ \left\langle {\phi} \right\rangle_{ {{i}}+\frac{1}{2} {{e}}^0} $, $ \left\langle {\phi} \right\rangle_{ {{i}}- {{e}}^0+\frac{1}{2} {{e}}^1} $, and $ \left\langle {u_0} \right\rangle_{ {{i}}+\frac{3}{2} {{e}}^0 + {{e}}^1} $ are face-averaged values while $ \left\langle {\phi} \right\rangle_{ {{i}}} $ is a cell-averaged value. Horizontal and vertical hatches represent the averaging processes over a vertical cell face and a horizontal cell face, respectively. Light gray area represents averaging over a cell[5].

    图 2  计算域边界上的两层虚拟单元$ (d = 1) $. 粗实线代表域边界, 细实线表示内部控制体, 而虚线表示虚拟单元[5]

    Fig. 2.  An example ($ d = 1 $) of ghost filling for the domain boundary. The thick line represents a physical boundary, the thin solid lines interior cells, and the dotted lines ghost cells[5].

    图 3  在不规则计算域上用正交网格离散Laplace算子$ \varDelta $[26]

    Fig. 3.  Discretizing the Laplacian on irregular domains with rectangular grids[26].

    图 4  从给定起始点开始选择一组格点以拟合多维n次完全多项式. 用拟合的完全多项式可以离散空间算子, 并且能很方便地满足边界条件[26]

    Fig. 4.  For a given starting point, we choose a set of nodes to fit a high-order, multi-variate, complete polynomial, which facilitates the discretization of spatial operators and the enforcement of boundary conditions[26].

    图 5  三维顶盖驱动方腔流测试中均匀网格上($h = {1}/{128}$)对称平面$ z = 1 $内的流线快照. 不同颜色代表不同的$ \|{u}\|_2 $[5]

    Fig. 5.  Snapshots of streamlines for the 3D lid-driven cavity test inside the symmetry plane $ z = 1 $ on a uniform grid with $h = {1}/{128}$. Different colors represent different values of $ \|{u}\|_2 $[5].

    图 6  三维顶盖驱动方腔流测试中均匀网格上($h = {1}/{128}$)涡量的x-分量等值面. 红色, 橙色, 蓝色和青色对应的涡量x-分量值分别为–0.50, –0.25, 0.25和0.50[5]

    Fig. 6.  Isosurfaces of the x component of the vorticity vector for the 3D lid-driven cavity test on a uniform grid with $h = {1}/{128}$. The values of the vorticity component for the red, orange, blue, cyan surfaces are –0.50, –0.25, 0.25, and 0.50, respectively[5].

    图 7  时刻$ t = 1, 2, 4, 6, 8, 10, 12 $对称平面$ z = 0 $上主旋涡的中心位置比较. “$ \circ $”表示本文的数值结果(由最小化$ \|{u}\|_2 $得到), 而“+”和“$ \square $”分别是Guermond等[34]得到的实验和计算结果[5]

    Fig. 7.  A comparison of the center locations of the primary eddy in the symmetry plane $ z = 0 $ at time instances $ t = 1, 2, 4, 6, 8, 10, 12 $. The circles represent numerical results of this work, which are determined by minimizing the speed $ \|{u}\|_2 $. The experimental and computational results of Guermond et. al.[34] are represented by the crosses and the squares, respectively[5].

    图 8  三维顶盖驱动方腔流在时刻$ t = 12 $的流速剖面图比较($h = {1}/{128}$). 实线表示本文的数值结果, 即$ -\frac{1}{2}u $$ \frac{1}{2}v $分别作为 $ \frac{1}{2}-y $$ \frac{1}{2}-x $的函数. “$ \times $”和“$ \cdot $”分别表示Guermond等[34]得到的实验和计算结果[5]

    Fig. 8.  A comparison of velocity profiles for the three dimensional lid-driven cavity test ($h = {1}/{128}$) at $ t = 12 $. Solid lines represent computational results of this work, i.e. $ -\frac{1}{2}u $ as a function of $ \frac{1}{2}-y $ and $ \frac{1}{2}v $ as a function of $ \frac{1}{2}-x $. The computational and experimental results of Guermond et. al.[34] are represented by the solid dots and crosses, respectively[5].

    图 9  二维顶盖驱动方腔流测试中均匀网格上$(h = {1}/{128})$的流速场

    Fig. 9.  Numerical results of the velocity field in the two dimensional lid-driven cavity test on the unit box and the rotated box with $h = {1}/{128}$.

    图 10  二维顶盖驱动方腔流测试中均匀网格上$(h = {1}/{128})$的涡量快照

    Fig. 10.  Numerical results of the vorticity in the two dimensional lid-driven cavity test on the unit box and the rotated box with $h = {1}/{128}$.

    表 1  用GePUP-ERK算法在不规则计算域(87)上求解以(88)式和(89)式为解析解的INSE得到的误差和收敛阶. Re = 1000, $ t_0 = 0 $, $ t_{\rm e} = 0.1 $, $ {{\textsf{Cr}}} = 0.2 $[5]

    Table 1.  Errors and convergence rates of GePUP-ERK for solving the INSE on the irregular domain (87) with Eq. (88) and Eq. (89) as the analytic solutions. Re = 1000, $ t_0 = 0 $, $ t_{\rm e} = 0.1 $, $ {{\textsf{Cr}}} = 0.2 $[5].

    h ${1}/{32}$ Rate ${1}/{64}$ Rate $1/{128}$ Rate $1/{256}$
    ${u}$ $ L_{\infty} $ 2.63 × 10–4 3.94 1.71 × 10–5 3.98 1.08 × 10–6 4.00 6.78 × 10–8
    $ {u} $ $ L_1 $ 1.63 × 10–4 3.87 1.12 × 10–5 3.97 7.14 × 10–7 3.99 4.48 × 10–8
    $ {u} $ $ L_2 $ 1.49 × 10–4 3.89 1.01 × 10–5 3.98 6.38 × 10–7 4.00 4.00 × 10–8
    p $ L_{\infty} $ 1.63 × 10–3 3.99 1.02 × 10–4 4.00 6.39 × 10–6 4.01 3.97 × 10–7
    p $ L_1 $ 3.26 × 10–4 4.00 2.04 × 10–5 4.03 1.25 × 10–6 3.97 7.97 × 10–8
    p $ L_2 $ 4.60 × 10–4 3.99 2.89 × 10–5 4.01 1.80 × 10–6 3.99 1.13 × 10–7
    下载: 导出CSV

    表 2  不同的测试中为了达到同样的$ L_2 $流速计算精度$ \epsilon $, GePUP-IMEX相对于MCG[7]的性能加速比$ S_{4 |2} $[5]

    Table 2.  The speedup $ S_{4 |2} $ of GePUP-IMEX over MCG[7] for achieving the same $ L_2 $ accuracy $ \epsilon $ of the velocity[5].

    $ S_{4 |2} $ $ \epsilon = 10^{-4} $ $ \epsilon = 10^{-6} $ $ \epsilon = 10^{-8} $ $ \epsilon = 10^{-10} $
    单涡量测试, Re = $ 2\times 10^4 $ 1.73 5.50 × 101 1.73 × 103 5.47 × 104
    二维粘盒测试, Re = $ 10^4 $ 5.03 1.59 × 102 5.03 × 103 1.59 × 105
    二维粘盒测试, Re = 100 1.26 × 101 4.00 × 102 1.26 × 104 3.98 × 105
    三维粘盒测试, Re = $ 10^4 $ 8.65 × 101 8.65 × 103 8.65 × 105 8.65 × 107
    三维粘盒测试, Re = 100 4.24 × 101 4.24 × 103 4.24 × 105 4.24 × 107
    下载: 导出CSV

    表 3  不同的测试中为了达到同样的$ L_{\infty} $涡量计算精度$ \epsilon $, GePUP-IMEX相对于MCG[7]的性能加速比$ S_{3 |1} $[5]

    Table 3.  The speedup $ S_{3 |1} $ of GePUP-IMEX over MCG[7] for achieving the same $ L_{\infty} $ accuracy $ \epsilon $ of the vorticity[5].

    $ S_{3 |1} $ $ \epsilon = 10^{-2} $ $ \epsilon = 10^{-3} $ $ \epsilon = 10^{-4} $ $ \epsilon = 10^{-5} $
    单涡量测试, Re = $ 2\times 10^4 $ 1.89 × 104 1.89 × 106 1.89 × 108 1.89 × 1010
    二维粘盒测试, Re = $ 10^4 $ 2.30 × 105 2.30 × 107 2.30 × 109 2.30 × 1011
    三维粘盒测试, Re = $ 10^4 $ 3.66 × 107 1.70 × 1010 7.88 × 1012 3.66 × 1015
    下载: 导出CSV
    Baidu
  • [1]

    Smale S 1998 Mathematical Intelligencer 20 7Google Scholar

    [2]

    Devlin K 2005 The Millennium Problems: the Seven Greatest Unsolved Mathematical Puzzles of Our Time (Granta Books) pp103−136

    [3]

    Carlson J, Jaffe A, Wiles A, Editors 2006 The Millennium Prize Problems (American Mathematical Society) pp57−67

    [4]

    Zhang Q 2014 Appl. Numer. Math. 77 16Google Scholar

    [5]

    Zhang Q 2016 J. Sci. Comput. 67 1134Google Scholar

    [6]

    Bell J B, Colella P, Glaz H M 1989 J. Comput. Phys. 85 257Google Scholar

    [7]

    Martin D F, Colella P, Graves D 2008 J. Comput. Phys. 227 1863Google Scholar

    [8]

    Taylor M E 2011 Partial Differential Equations I. No. 115 in Applied Mathematical Sciences (2nd Ed.) (Springer) pp408−409

    [9]

    Sanderse B, Koren B 2012 J. Comput. Phys. 231 3041Google Scholar

    [10]

    Griffth B E 2009 J. Comput. Phys. 228 7565Google Scholar

    [11]

    Benzi M, Golub G H, Liesen J 2005 Acta Numer. 14 1Google Scholar

    [12]

    Chorin A J 1968 Math. Comput. 22 745Google Scholar

    [13]

    Kim J, Moin P 1985 J. Comput. Phys. 59 308Google Scholar

    [14]

    Orszag S A, Israeli M, Deville M O 1986 J. Sci. Comput. 1 75Google Scholar

    [15]

    Weinan E, Liu J G 2003 Comm. Math. Sci. 1 317Google Scholar

    [16]

    Guermond J L, Minev P, Shen J 2006 Comput. Methods Appl. Mech. Engrgy 195 6011Google Scholar

    [17]

    Brown D L, Cortez R, Minion M L 2001 J. Comput. Phys. 168 464Google Scholar

    [18]

    Kleiser L, Schumann U 1980 Proceedings of the Third GAMM-Conference on Numerical Methods in Fluid Mechanics, vol. 2 of Notes on Numerical Fluid Mechanics (Springer) pp 165−173

    [19]

    Gresho P M, Sani R L 1987 Int. J. Numer. Methods Fluids 7 1115Google Scholar

    [20]

    Henshaw W D 1994 J. Comput. Phys. 113 13Google Scholar

    [21]

    Johnston H, Liu J G 2004 J. Comput. Phys. 199 221Google Scholar

    [22]

    Liu J G, Liu J, Pego R L 2007 Commun. Pure Appl. Math. 60 1443Google Scholar

    [23]

    Liu J G, Liu J, Pego R L 2010 J. Comput. Phys. 229 3428Google Scholar

    [24]

    Shirokoff D, Rosales R R 2011 J. Comput. Phys. 230 8619Google Scholar

    [25]

    Zhang Q, Johansen H, Colella P 2012 SIAM J. Sci. Comput. 34 B179Google Scholar

    [26]

    Li Z, Zhang Q 2021 submitted for publication

    [27]

    Zhang Q, Li Z 2021 submitted for publication

    [28]

    Ascher U M, Ruuth S J, Spiteri R J 1997 Appl. Numer. Math. 25 151Google Scholar

    [29]

    Kennedy C A, Carpenter M H 2003 Appl. Numer. Math. 44 139Google Scholar

    [30]

    Briggs W L, Henson V E, McCormick S F 2000 A Multigrid Tutorial (2nd Ed.) (SIAM) pp 31−43

    [31]

    Brandt A 1986 Appl. Math. Comput. 19 23Google Scholar

    [32]

    Trottenberg U, Oosterlee C, Schuller A 2001 Multigrid (Elsevier Academic Press) pp439−441

    [33]

    Shankar P N, Deshpande M D 2000 Annu. Rev. Fluid Mech. 32 93Google Scholar

    [34]

    Guermond J L, Migeon C, Pineau G, Quartapelle L 2002 J. Fluid. Mech. 450 169Google Scholar

    [35]

    Verstappen R, Veldman A 1997 J. Eng. Math. 32 143Google Scholar

    [36]

    Hokpunna A, Manhart M 2010 J. Comput. Phys. 229 7545Google Scholar

    [37]

    Almgren A, Aspden A, Bell J B, Minion M L 2013 SIAM J. Sci. Comput. 35 B25Google Scholar

    [38]

    Gullbrand J 2000 An Evaluation of a Conservative Fourth Order DNS Code in Turbulent Channel Center for Turbulence Research, Stanford University

    [39]

    Shishkina O, Wagner C 2007 Comput. Fluids 36 484Google Scholar

    [40]

    Knikker R 2009 Int. J. Numer. Methods Fluids 59 1063Google Scholar

    [41]

    Adams M, Colella P, Graves D T, Johnson J, Keen N, Ligocki T J, Martin D F, McCorquodale P, Modiano D, Schwartz P, Sternberg T, Straalen B V 2014 Chombo Software Package for AMR Applications-Design Document Lawrence Berkeley National Laboratory. LBNL-6616 E

    [42]

    Chombo http://seesar.lbl.gov/ANAG/software.html. Version 3.2

    [43]

    Meuer H, Strohmaier E, Dongarra J, Simon H http://www.top500.org [2020-11-25]

    [44]

    Zhang Q, Fogelson A 2016 SIAM J. Numer. Anal. 54 530Google Scholar

    [45]

    Zhang Q 2018 SIAM J. Sci. Comput. 40 A3755Google Scholar

  • [1] 吴慎将, 刘荣明, 王佳, 李党娟, 程军霞. Mojette变换层析技术中的投影角度布局方法.  , 2021, 70(3): 034202. doi: 10.7498/aps.70.20200927
    [2] 赖煜成, 陈苏琪, 牟兰雅, 王兆娜. 基于麦克斯韦方程组的纳米尺度电磁边界条件.  , 2021, 70(23): 230301. doi: 10.7498/aps.70.20211025
    [3] 冯德山, 杨道学, 王珣. 插值小波尺度法探地雷达数值模拟及四阶Runge Kutta辅助微分方程吸收边界条件.  , 2016, 65(23): 234102. doi: 10.7498/aps.65.234102
    [4] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步.  , 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [5] 刘远东, 尹益辉, 谭云. 一般边界条件下球形压力容器钢壁中氚和氦-3的浓度变化规律研究.  , 2012, 61(15): 156601. doi: 10.7498/aps.61.156601
    [6] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法.  , 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [7] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究.  , 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [8] 黄丽莲, 马楠. 一种异结构分数阶混沌系统投影同步的新方法.  , 2012, 61(16): 160510. doi: 10.7498/aps.61.160510
    [9] 李农, 李建芬. 混沌系统的统一投影同步.  , 2011, 60(11): 110512. doi: 10.7498/aps.60.110512
    [10] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步.  , 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [11] 李彦敏, 梅凤翔. 广义Birkhoff方程的积分方法.  , 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [12] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法.  , 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [13] 王兴元, 贺毅杰. 分数阶统一混沌系统的投影同步.  , 2008, 57(3): 1485-1492. doi: 10.7498/aps.57.1485
    [14] 王旦霞, 张建文, 吴润衡. 弹性矩形板方程在非线性边界条件下整体解的存在唯一性.  , 2008, 57(11): 6741-6750. doi: 10.7498/aps.57.6741
    [15] 闵富红, 王执铨. 两个四维混沌系统广义投影同步.  , 2007, 56(11): 6238-6244. doi: 10.7498/aps.56.6238
    [16] 雍雪林, 张鸿庆. 推广的投影Riccati方程法及其应用.  , 2005, 54(6): 2514-2519. doi: 10.7498/aps.54.2514
    [17] 肖奕. 孤子方程求解的投影矩阵法.  , 1989, 38(12): 1911-1918. doi: 10.7498/aps.38.1911
    [18] 罗正明. 求解流函数方程Cauchy问题的一种迭代投影方法.  , 1987, 36(2): 217-223. doi: 10.7498/aps.36.217
    [19] 沈解伍, 周玉美, 庆承瑞. 无导体壁时无穷远边界自由界面磁面方程求解的一个新方法.  , 1980, 29(8): 1058-1062. doi: 10.7498/aps.29.1058
    [20] 霍裕平. 用光学方法实现么正变换及一般线性变换(Ⅳ)——图形识别及投影算子.  , 1980, 29(2): 153-160. doi: 10.7498/aps.29.153
计量
  • 文章访问数:  11019
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-03-09
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map