-
Applications of magnetometers are affected mainly by their sensitivities and detection bandwidths. Till now, the applications of the centimeter-scale optomechanical magnetometer have been still limited by those two factors. In order to improve its sensing performance in a low frequency regime of the alternating current (AC) magnetic field sensor based on centimeter-scale whispering gallery mode resonator, we design a new centimeter-scale crystalline whispering gallery mode resonator which has different relative distributions of the magnetostrictive material (Terfenol-D) and the optical material (CaF2) from the unoptimized centimeter-scale whispering gallery mode resonator. Experimental results show that this new resonator is able to detect the AC magnetic field ranging from 6 Hz to 1 MHz, and a peak sensitivity of 530 pT·Hz–1/2 at 123.8 kHz is achieved without DC bias field in a magnetically unshielded non-cryogenic environment. On condition that the optical quality factor is at the same level of 108 and there is no DC bias magnetic field, the best sensitivity of the optimized resonator is 11 times higher than that of the unoptimized resonator, and the corresponding detection frequency band is expanded by 1.67 times, switching from the frequency band of 10 Hz–600 kHz to 6 Hz–1 MHz. Besides, the device only needs 100 μW light intensity to operate, which offers us a low optical power consumption magnetometer. Within the detection frequency band, the proposed magnetometer can detect both a single frequency alternating magnetic field signal and an alternating magnetic field signal covering a certain frequency range. It can detect 50 or 60 Hz alternating magnetic field signal generated by current in the wire so that the working status of the power system can be monitored. If the sensing performance is further improved, it may be able to detect the magnetic field signal at frequency in a range of 1 kHz–10 MHz generated by the partial discharge current and the extremely low frequency human body magnetic field signal located in a frequency band of [10 mHz–1 kHz]. Further improvement in sensing performance is possible through optimizing the system noise and the magnetic field response capability of the device, which might allow the device to possess the applications in the fields of power system fault monitoring and medical diagnosis.
-
Keywords:
- magnetic field sensing /
- optical resonator /
- whispering gallery mode
[1] Li J, Suh M G, Vahala K 2017 Optica 4 346
Google Scholar
[2] Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612
Google Scholar
[3] Weng W, Anstie J D, Stace T M, Campbell G, Baynes F N, Luiten A N 2014 Phys. Rev. Lett. 112 160801
Google Scholar
[4] Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495
Google Scholar
[5] Li B B, Wang Q Y, Xiao Y F, Jiang X F, Li Y, Xiao L, Gong Q 2010 Appl. Phys. Lett. 96 251109
Google Scholar
[6] Ma Q, Huang L, Guo Z, Rossmann T 2010 Meas. Sci. Technol. 21 115206
Google Scholar
[7] Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai H 2011 Appl. Opt. 50 992
Google Scholar
[8] Ioppolo T, Otugen M V 2007 J. Opt. Soc. Am. B:Opt. Phys. 24 2721
Google Scholar
[9] Manzo M, Ioppolo T, Ayaz U K, Lapenna V, tgen M V 2012 Rev. Sci. Instrum. 83 105003
Google Scholar
[10] Henze R, Seifert T, Ward J, Benson O 2011 Opt. Lett. 36 4536
Google Scholar
[11] Harris G I, McAuslan D L, Stace T M, Doherty A C, Bowen W P 2013 Phys. Rev. Lett. 111 103603
Google Scholar
[12] Schliesser A, Anetsberger G, Rivire R, Arcizet O, Kippenberg T J 2008 New. J. Phys. 10 095015
Google Scholar
[13] Tallur S, Bhave S A 2013 Opt. Express 21 1
Google Scholar
[14] Anetsberger G, Gavartin E, Arcizet O, Unterreithmeier Q P, Weig E M, Gorodetsky M L, Kotthaus J P, Kippenberg T J 2010 Phys. Rev. A 82 061804
Google Scholar
[15] Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photonics 6 768
Google Scholar
[16] Ioppolo T, Ayaz U, Otugen M V 2009 Opt. Express 17 16465
Google Scholar
[17] Ali A R, Ioppolo T, tgen V, Christensen M, MacFarlane D 2014 J. Polym. Sci., Part B: Polym. Phys. 52 276
Google Scholar
[18] Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Dunlop H R 2012 Phys. Rev. Lett. 108 1
Google Scholar
[19] Forstner S, Sheridan E, Knittel J, Humphreys C L, Brawley G A, Dunlop H R, Bowen W P 2014 Adv. Mater. 26 1
Google Scholar
[20] Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850
Google Scholar
[21] Yu C Q, Janousek J, Sheridan E, McAuslan D L, Dunlop H R, Lam P K, Zhang Y D, Bowen W P 2016 Phys. Rev. Appl. 5 044007
Google Scholar
[22] Yu Y M, Forstner S, Rubinsztein-Dunlop H, Bowen W P 2018 Sensors 18 1558
Google Scholar
[23] Zhu J G, Zhao G M, Savukor I, Yang L 2017 Sci. Rep. 7 8896
Google Scholar
[24] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 7698
Google Scholar
[25] Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys.Lett. 88 062510
Google Scholar
[26] Meyer H G, Stolz R, Chwala A, Schulz M 2005 Phys. Status Solidi C 2 1504
Google Scholar
[27] Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applicaitons (Weinheim: Wiley-VCH) pp1020−1038
[28] Grosz A, Haji-Sheikh M J, Mukhopadhyay S C, 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp140−147
[29] Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L 2007 Opt. Express 15 6768
Google Scholar
[30] Forstner S, Knittel J, Rubinsztein-Dunlop H, Bowen W P 2012 Proceedings of SPIE 8439 84390U
Google Scholar
[31] Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46
Google Scholar
[32] Yuen H P, Chan V M 1983 Opt. Lett. 8 177
Google Scholar
[33] Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) pp257−264
[34] Tang T, Wu X, Liu L Y, Xu L 2016 Appl. Opt. 55 395
Google Scholar
[35] Hemmati E, Shahrtash S M 2013 IEEE Trans. Instrum. Meas. 62 71
Google Scholar
[36] Vrba J, Robinson S E 2001 Methods 25 249
Google Scholar
-
图 3 (a) 改进前谐振腔力学模式的有限元模拟结果, 从左至右, 频率依次为69.2 kHz, 121.3 kHz, 和138.4 kHz; (b) 改进型谐振腔力学模式的有限元模拟结果, 从左至右, 频率依次为72.5 kHz, 123.8 kHz, 和137.5 kHz
Fig. 3. (a) Finite element modelling (FEM) of mechanical eigenfrequency modes for unoptimized resonator; From left to right, the frequencies are 69.2 kHz, 121.3 kHz and 138.4 kHz, respectively; (b) FEM of mechanical eigenfrequency modes for optimized resonator. From left to right, the frequencies are 72.5 kHz, 123.8 kHz and 137.5 kHz, respectively.
图 7 (a) 电光调制频率为15 MHz时的功率谱密度
$S\left( \omega \right)$ ; 绿色峰为280 kHz处的参考磁场信号; 插图: BW = 330 Hz时SNR开方值随信号场强度变化关系; (b) 系统响应$N\left( \omega \right)$ Fig. 7. (a) Power spectral density
$S\left( \omega \right)$ with a 15 MHz electro optic modulation frequency, and the highest green peak shows the response to the applied reference field at 280 kHz; Inset: response to the magnetic field as a function of signal field strength, with 330 Hz spectrum analyzer resolution bandwidth; (b) system response$N\left( \omega \right)$ .图 8 (a) 电光调制频率为13.6 MHz时的功率谱密度
$S\left( \omega \right)$ , 280 kHz参考磁场频率处有峰值响应; 插图: BW = 10 Hz条件下, SNR开方值随信号场强度变化关系; (b) 系统响应$N\left( \omega \right)$ Fig. 8. (a) Power spectral density
$S\left( \omega \right)$ with a 13.6 MHz electro optic modulation frequency, and the highest peak shows the response to the applied reference field at 280 kHz; Inset: response to the magnetic field as a function of signal field strength, with 10 Hz spectrum analyzer resolution bandwidth; (b) system response$N\left( \omega \right)$ . -
[1] Li J, Suh M G, Vahala K 2017 Optica 4 346
Google Scholar
[2] Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612
Google Scholar
[3] Weng W, Anstie J D, Stace T M, Campbell G, Baynes F N, Luiten A N 2014 Phys. Rev. Lett. 112 160801
Google Scholar
[4] Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495
Google Scholar
[5] Li B B, Wang Q Y, Xiao Y F, Jiang X F, Li Y, Xiao L, Gong Q 2010 Appl. Phys. Lett. 96 251109
Google Scholar
[6] Ma Q, Huang L, Guo Z, Rossmann T 2010 Meas. Sci. Technol. 21 115206
Google Scholar
[7] Lin N, Jiang L, Wang S, Xiao H, Lu Y, Tsai H 2011 Appl. Opt. 50 992
Google Scholar
[8] Ioppolo T, Otugen M V 2007 J. Opt. Soc. Am. B:Opt. Phys. 24 2721
Google Scholar
[9] Manzo M, Ioppolo T, Ayaz U K, Lapenna V, tgen M V 2012 Rev. Sci. Instrum. 83 105003
Google Scholar
[10] Henze R, Seifert T, Ward J, Benson O 2011 Opt. Lett. 36 4536
Google Scholar
[11] Harris G I, McAuslan D L, Stace T M, Doherty A C, Bowen W P 2013 Phys. Rev. Lett. 111 103603
Google Scholar
[12] Schliesser A, Anetsberger G, Rivire R, Arcizet O, Kippenberg T J 2008 New. J. Phys. 10 095015
Google Scholar
[13] Tallur S, Bhave S A 2013 Opt. Express 21 1
Google Scholar
[14] Anetsberger G, Gavartin E, Arcizet O, Unterreithmeier Q P, Weig E M, Gorodetsky M L, Kotthaus J P, Kippenberg T J 2010 Phys. Rev. A 82 061804
Google Scholar
[15] Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photonics 6 768
Google Scholar
[16] Ioppolo T, Ayaz U, Otugen M V 2009 Opt. Express 17 16465
Google Scholar
[17] Ali A R, Ioppolo T, tgen V, Christensen M, MacFarlane D 2014 J. Polym. Sci., Part B: Polym. Phys. 52 276
Google Scholar
[18] Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Dunlop H R 2012 Phys. Rev. Lett. 108 1
Google Scholar
[19] Forstner S, Sheridan E, Knittel J, Humphreys C L, Brawley G A, Dunlop H R, Bowen W P 2014 Adv. Mater. 26 1
Google Scholar
[20] Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850
Google Scholar
[21] Yu C Q, Janousek J, Sheridan E, McAuslan D L, Dunlop H R, Lam P K, Zhang Y D, Bowen W P 2016 Phys. Rev. Appl. 5 044007
Google Scholar
[22] Yu Y M, Forstner S, Rubinsztein-Dunlop H, Bowen W P 2018 Sensors 18 1558
Google Scholar
[23] Zhu J G, Zhao G M, Savukor I, Yang L 2017 Sci. Rep. 7 8896
Google Scholar
[24] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 7698
Google Scholar
[25] Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys.Lett. 88 062510
Google Scholar
[26] Meyer H G, Stolz R, Chwala A, Schulz M 2005 Phys. Status Solidi C 2 1504
Google Scholar
[27] Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applicaitons (Weinheim: Wiley-VCH) pp1020−1038
[28] Grosz A, Haji-Sheikh M J, Mukhopadhyay S C, 2017 High Sensitivity Magnetometers (Switzerland: Springer) pp140−147
[29] Savchenkov A A, Matsko A B, Ilchenko V S, Maleki L 2007 Opt. Express 15 6768
Google Scholar
[30] Forstner S, Knittel J, Rubinsztein-Dunlop H, Bowen W P 2012 Proceedings of SPIE 8439 84390U
Google Scholar
[31] Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46
Google Scholar
[32] Yuen H P, Chan V M 1983 Opt. Lett. 8 177
Google Scholar
[33] Engdahl G 2000 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) pp257−264
[34] Tang T, Wu X, Liu L Y, Xu L 2016 Appl. Opt. 55 395
Google Scholar
[35] Hemmati E, Shahrtash S M 2013 IEEE Trans. Instrum. Meas. 62 71
Google Scholar
[36] Vrba J, Robinson S E 2001 Methods 25 249
Google Scholar
计量
- 文章访问数: 5112
- PDF下载量: 88
- 被引次数: 0