搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向红外条件下光纤布置形式及光源参数对低温靶温度场的影响

郭富城 李翠 厉彦忠

引用本文:
Citation:

定向红外条件下光纤布置形式及光源参数对低温靶温度场的影响

郭富城, 李翠, 厉彦忠

Influence of directional infrared irradiations on the temperature field in ICF cryotargets

Guo Fu-Cheng, Li Cui, Li Yan-Zhong
PDF
HTML
导出引用
  • 惯性约束核聚变成功的关键之一在于靶丸内要形成均匀的燃料冰层, 靶丸外表面温度特性对惯性约束聚变低温靶内形成均匀的燃料冰层有着决定性的影响. 为使得靶丸外表面温度场尽可能均匀, 需采用定向红外的方式对靶丸外表面温度进行局部调控. 采用全三维低温靶物理模型, 建立定向红外光路追踪与温度场计算耦合计算的光热耦合数值模型, 研究了定向红外条件下光纤布置形式及光源参数对低温靶温度场的影响规律. 结果表明: 在光纤总功率不变的前提下, 光纤数量越多, 靶丸外表面温度场均匀性越好. 光纤数量小于等于2时, 靶丸外表面温度场无法得到明显改善; 光纤数量大于2时, 靶丸外表面最大温差和加权温差降低幅值极限为61.94%和76.33%. 光纤投射的光斑向南北两极适量偏移可以改善靶丸外表面温度场均匀性, 其他的偏移方式会恶化温度场均匀性.
    For an inertial-confinement-fusion cryogenic target, the fusion ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than 1 μm (root mean square) to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is generated at the presence of volumetric heat and affected by the thermal environment around the capsule. For the D2 fuel targets, the volumetrically heating can be supplied by exposing the ice layer to IR radiation. A major challenge of IR-layering is a spherically uniform IR illumination of the capsule, particularly for capsules held in cylindrical hohlraums in indirect-drive targets. In the present study, a numerical study is conducted on the thermal environment of D2 fuel capsule under directional infrared radiation. A 3D simulation model coupling the photonic and thermal fields has been established based on the Monte Carlo ray tracing method. The influence of infrared optical fibers’ layouts and source power intensity on temperature characteristics outside the capsule have been studied. The results indicate that at constant total power of optical fibers, the more optical fibers set up, the lower the average temperature of the outer surface decreases, and the more uniform the capsule outer surface temperature turns to be. The temperature uniformity of capsule outer surface deteriorates with the two or less optical fibers, but improves with the number greater than 2 in which case ΔTmax and ΔTw can decrease by 61.94% and 76.33% at most. A proper offset of optical fiber spots towards the hohlraum poles can improve the temperature uniformity of capsule outer surface, while the other two optical fiber spot offset schemes deteriorate the temperature uniformity. The results are of guiding significance for determining the optical fibers layout in experiment and further design option for cryogenic targets.
      通信作者: 李翠, xjtucli@xjtu.edu.cn
    • 基金项目: 国家重大专项(批准号: ***040301.2)|和国家自然科学基金面上项目(批准号: 52176021)
      Corresponding author: Li Cui, xjtucli@xjtu.edu.cn
    • Funds: Project supported by the National Special Program of China (Grant No. ***040301.2) and the Open Fundation of State Key Laboratory of Cryogenic Space Propellants (Grant No. SKLTSCP202012).
    [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    张占文, 漆小波, 李波 2012 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [6]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [11]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [13]

    Lan K, He X T, Liu J 2014 Phys. Plasmas 21 052704Google Scholar

    [14]

    Harding D R, Ulreich J, Wittman M D 2018 Fusion Sci. Technol. 73 11Google Scholar

    [15]

    李翠, 陈洵, 厉彦忠 2019 西安交通大学学报 53 7Google Scholar

    Li C, Chen X, LI Y Z 2019 Journal of Xi’an Jiaotong University 53 7Google Scholar

    [16]

    林伟, 王凯, 毕鹏 2012 强激光与粒子束 25 2343Google Scholar

    Lin W, Wang K, BI P 2012 High Power Laser and Particle Beams 25 2343Google Scholar

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608Google Scholar

    [18]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574Google Scholar

    [19]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technol. 51 737Google Scholar

    [20]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technol. 45 262

    [21]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technol. 45 245

    [22]

    王凯, 林伟, 谢瑞, 刘元琼, 马坤全, 黎军, 唐永建, 雷海乐 2013 强激光与粒子束 25 4322Google Scholar

    Wang K, Lin W, Xie R, Liu Y Q, Ma K Q, Li J, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 4322Google Scholar

    [23]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [24]

    陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅 2017 66 190702Google Scholar

    Chen P W, Li Y Z, Li C, Dai F, Ding L, Xin Y 2017 Acta Phys. Sin. 66 190702Google Scholar

    [25]

    辛毅, 厉彦忠, 丁岚, 李翠 2019 原子能科学技术 53 6931Google Scholar

    Xin Y, Li Y Z, Ding L, Li C 2019 Atomic Energy Science and Technology 53 6931Google Scholar

    [26]

    Hong Y, Tao C Y, Gao S S, Qi X B, Jiang B B, Xie J, Liang J X, Zhang H J, Li G, Wei S, Tong W C, Yuan G H, Zhang Y J, Li X J 2020 Nuclear Fusion 60 026010Google Scholar

  • 图 1  低温靶系统主要部件结构尺寸 (a)套筒结构尺寸; (b)靶丸结构尺寸

    Fig. 1.  Schematic of cryogenic target system: (a) Hohlraum structure; (b) capsule structure

    图 2  网格无关性验证

    Fig. 2.  Gird-independence validation result

    图 3  靶丸外表面温度云图

    Fig. 3.  Temperature contour of capsule outside surface

    图 4  红外光纤布置示意图

    Fig. 4.  Schematic of infrared(IR) optical fiber layout

    图 5  不同光纤数量下光纤布置形式

    Fig. 5.  The layout of optical fiber corresponding to optical fiber numbers

    图 6  不同光纤数量下的靶丸外表面温度云图

    Fig. 6.  Temperature contour of capsule outside surface corresponding to optical fiber numbers

    图 7  靶丸外表面特征线

    Fig. 7.  Characteristic line of capsule outside surface

    图 8  靶丸外表面特征线温度分布 (a)靶丸外表面水平特征线温度分布曲线; (b)靶丸外表面竖直特征线温度分布曲线

    Fig. 8.  Temperature distribution of characteristic line of capsule outside surface: (a)Horizontal characteristic line; (b) vertical characteristic line

    图 9  不同光纤数量下靶丸外表面最大温差、加权温差及平均温度变化

    Fig. 9.  ΔTmax, ΔTw and $ \bar T$ variations of capsule outside surface responding to optical fiber numbers

    图 10  不同光源功率密度下靶丸表面温度云图 (a) 0 W·m–2; (b) 1 W·m–2; (c) 4 W·m–2; (d) 10 W·m–2

    Fig. 10.  Temperature contours of capsule outside surface under different optical fiber power densities: (a) 0 W·m–2; (b) 1 W·m–2; (c) 4 W·m–2; (d) 10 W·m–2

    图 11  m = 1时靶丸外表面最大温差和加权温差随单根光源功率密度变化曲线

    Fig. 11.  ΔTmax and ΔTw variations of capsule outside surface responding to optical fiber power densities with m = 1

    图 12  靶丸外表面最大温差和加权温差随单根光源功率密度变化曲线 (a) m = 2; (b) m = 4; (c) m = 6; (d) m = 8

    Fig. 12.  ΔTmax and ΔTuni variations of capsule outside surface responding to optical fiber power densities: (a) m = 2; (b) m = 4; (c) m = 6; (d) m = 8

    图 13  不同光纤数量下, 靶丸外表面最大温差极小值和加权温差的极小值及其对应的光源功率密度的变化曲线 (a)最大温差极小值; (b)加权温差的极小值

    Fig. 13.  Tmax)min and (ΔTw)min variations of capsule outside surface responding to optical fiber numbers: (a) (ΔTmax)min; (b) (ΔTw)min

    图 14  3种红外光斑偏移方式

    Fig. 14.  Schematic of 3 kinds of IR spots offsets

    图 15  3种光纤光斑偏移方式下的靶丸外表面温度云图 (a)方式1; (b)方式2; (c)方式3

    Fig. 15.  Temperature contour of capsule outer surface corresponding to 3 kinds of IR spots offsets: (a) Mode1; (b) mode2; (c) mode3

    图 16  3种方案下靶丸外表面最大温差、加权温差和平均温度随南半腔光纤光斑偏移距离变化曲线 (a)方式1; (b)方式2; (c)方式3

    Fig. 16.  ΔTmax, ΔTuni and $ \bar T$ variations with migration distance of southern half hohlraum IR spots corresponding to 3 kinds of IR spots offsets: (a) Mode1; (b) mode2; (c) mode3.

    表 1  不同材料在18 K环境下的物性参数

    Table 1.  Physical properties of different materials at 18 K

    材料密度ρ/ kg·m–3热容cp/ J·kg–1·K–1导热系数λ/ W·m–1·K–1动力粘度μ/ kg·m–1·s–1
    27108.3727
    1932014.661173.44
    靶壳110057.490.057
    He@1 kPa0.35292.60.0211.31 × 10–6
    气态D20.0255193.70.0243.42 × 10–6
    固态D226050000.29
    (注: 本文不考虑气体对定向红外的影响, 因此氦气和氘气的吸收系数和散射系数均为0)
    下载: 导出CSV

    表 2  不同光纤数量下的每根光纤出射功率密度

    Table 2.  The power density of each optical fiber corresponding to optical fiber numbers

    m12468
    单根功率密度/(W·m–2)4.002.001.000.670.50
    下载: 导出CSV
    Baidu
  • [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    张占文, 漆小波, 李波 2012 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [6]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [11]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [13]

    Lan K, He X T, Liu J 2014 Phys. Plasmas 21 052704Google Scholar

    [14]

    Harding D R, Ulreich J, Wittman M D 2018 Fusion Sci. Technol. 73 11Google Scholar

    [15]

    李翠, 陈洵, 厉彦忠 2019 西安交通大学学报 53 7Google Scholar

    Li C, Chen X, LI Y Z 2019 Journal of Xi’an Jiaotong University 53 7Google Scholar

    [16]

    林伟, 王凯, 毕鹏 2012 强激光与粒子束 25 2343Google Scholar

    Lin W, Wang K, BI P 2012 High Power Laser and Particle Beams 25 2343Google Scholar

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608Google Scholar

    [18]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574Google Scholar

    [19]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technol. 51 737Google Scholar

    [20]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technol. 45 262

    [21]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technol. 45 245

    [22]

    王凯, 林伟, 谢瑞, 刘元琼, 马坤全, 黎军, 唐永建, 雷海乐 2013 强激光与粒子束 25 4322Google Scholar

    Wang K, Lin W, Xie R, Liu Y Q, Ma K Q, Li J, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 4322Google Scholar

    [23]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [24]

    陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅 2017 66 190702Google Scholar

    Chen P W, Li Y Z, Li C, Dai F, Ding L, Xin Y 2017 Acta Phys. Sin. 66 190702Google Scholar

    [25]

    辛毅, 厉彦忠, 丁岚, 李翠 2019 原子能科学技术 53 6931Google Scholar

    Xin Y, Li Y Z, Ding L, Li C 2019 Atomic Energy Science and Technology 53 6931Google Scholar

    [26]

    Hong Y, Tao C Y, Gao S S, Qi X B, Jiang B B, Xie J, Liang J X, Zhang H J, Li G, Wei S, Tong W C, Yuan G H, Zhang Y J, Li X J 2020 Nuclear Fusion 60 026010Google Scholar

  • [1] 单翀, 孔令豹, 崔勇, 季来林, 赵晓晖, 李福建, 饶大幸, 赵元安, 隋展, 邵建达. 基于空间分辨法分析时间低相干光自聚焦效应.  , 2024, 73(9): 090601. doi: 10.7498/aps.73.20240138
    [2] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [3] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用.  , 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [4] 郭富城, 李翠, 厉彦忠. 定向红外光空间分布误差对冷冻靶温度场的影响分析.  , 2022, 71(11): 110702. doi: 10.7498/aps.71.20212351
    [5] 于家成, 仲佳勇, 安维明, 平永利. 短脉冲强激光驱动磁重联过程的靶后电势分布特征.  , 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [6] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [7] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟.  , 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [8] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [9] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟.  , 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [10] 殷鹏飞, 张蓉, 熊江涛, 李京龙. 搅拌摩擦焊准稳态热力耦合过程数值模拟研究.  , 2013, 62(1): 018102. doi: 10.7498/aps.62.018102
    [11] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [12] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [13] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究.  , 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [14] 毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东. 红外光诱导氘氘固体再分布的研究.  , 2012, 61(6): 062802. doi: 10.7498/aps.61.062802
    [15] 白占国, 董丽芳, 李永辉, 范伟丽. 双层耦合Lengel-Epstein模型中的超点阵斑图.  , 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [16] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究.  , 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [17] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析.  , 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [18] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱.  , 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [19] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟.  , 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [20] 张旭, 沈柯. 时空混沌的单向耦合同步.  , 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
计量
  • 文章访问数:  3889
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 修回日期:  2021-04-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map