搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联环境下三量子比特量子关联动力学研究

宋悦 李军奇 梁九卿

引用本文:
Citation:

级联环境下三量子比特量子关联动力学研究

宋悦, 李军奇, 梁九卿

Dynamics of quantum correlation for three qubits in hierarchical environment

Song Yue, Li Jun-Qi, Liang Jiu-Qing
PDF
HTML
导出引用
  • 基于与各自的级联环境相互耦合的三个独立的量子比特系统, 详细考察了强、弱耦合体系下腔-腔耦合强度Ω和腔衰减率Γ1对负性纠缠度、Bell非定域性和纠缠目击的影响. 结果表明: Bell非定域性和纠缠目击都可以出现猝死和猝生现象; Γ1 = 0时, 随着Ω的增加, 三者在历经短时阻尼振荡后, 均会随时间达到各自的稳定值, 且该稳定值随着Ω的增大而增大. 同时, 三者在弱耦合体系的量值或存活时间都优于强耦合体系. 此外, 非零Γ1对量子关联有着很大的负面效应. 于是, 为了更好地抑制量子关联损失, 进一步分析了弱测量和测量反转操作的有效调控作用, 得到一些有趣的结果.
    Much attention has been paid to the dynamics of quantum correlation in an open quantum system coupled to a single-layered environment for a long time. However, the system can be influenced by the multilayer environment or hierarchical environment in realistic scenarios, which is attracting increasing interest at present. In this context, we explore in this paper the dynamics of quantum correlation for a quantum system consisting of three independent qubits, each being immersed in a single mode lossy cavity which is further connected to another cavity. The influences of cavity-cavity coupling strength Ω and the decay rate of cavity Γ1 on the measures of quantum correlation, including negativity, Bell non-locality as well as entanglement witness, are investigated in detail in a strong coupling regime and a weak coupling regime. It is shown that the phenomena of sudden death and sudden birth can happen to both Bell non-locality and entanglement witness. When the decay rate Γ1 = 0 is given, with the increase of Ω these measures eventually reach their stationary values over time after a short period of damping oscillations, in which these stationary values will become larger for the larger Ω. At the same time, the values or the survival times of quantum correlation considered by us in the weak coupling regime are better than in the strong coupling case. In addition, the non-zero Γ1 has a great negative effect on quantum correlation. Hence, in order to suppress the loss of quantum correlation better, the effective manipulation of quantum weak measurement and measurement reversal operator is considered further. Some interesting results are obtained.
      通信作者: 李军奇, ljqsxu@163.com
    • 基金项目: 国家自然科学基金(批准号:11105087)资助的课题
      Corresponding author: Li Jun-Qi, ljqsxu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11105087)
    [1]

    Paneru D, Cohen E, Fickler R, Boyd R W, Karimi E 2020 Rep. Prog. Phys. 83 064001Google Scholar

    [2]

    Su Z F, Tan H S, Li X Y 2020 Phys. Rev. A 101 042112Google Scholar

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [4]

    Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507Google Scholar

    [5]

    Hu X M, Xing W B, Liu B H, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 090503Google Scholar

    [6]

    Sabín C, García-Alcaine G 2007 Eur. Phys. J. D 48 435

    [7]

    Maity A G, Das D, Ghosal A, Roy A, Majumdar A S 2020 Phys. Rev. A 101 042340Google Scholar

    [8]

    Rosset D, Branciard C, Barnea T J, Pütz G, Brunner N, Gisin N 2016 Phys. Rev. Lett. 116 010403Google Scholar

    [9]

    Altintas F, Eryigit R 2010 Phys. Lett. A 374 4283Google Scholar

    [10]

    Anwer H, Nawareg M, Cabello A, Bourennane M 2019 Phys. Rev. A 100 022104Google Scholar

    [11]

    Shin D K, Henson B M, Hodgman S S, Wasak T, Chwedeńczuk J, Truscott A G 2019 Nature 10 4447

    [12]

    Kuo W T, Akhtar A A, Arovas D P, You Y Z 2020 Phys. Rev. B 101 224202Google Scholar

    [13]

    刑贵超, 夏云杰 2018 67 070301Google Scholar

    Xing G C, Xia Y J 2018 Acta Phys. Sin. 67 070301Google Scholar

    [14]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404Google Scholar

    [15]

    López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503Google Scholar

    [16]

    Aguilar G H, Valdés-Hernández A, Davidovich L, Walborn S P, Souto Ribeiro P H 2014 Phys. Rev. Lett. 113 240501Google Scholar

    [17]

    Antonelli C, Shtaif M, Brodsky M 2011 Phys. Rev. Lett. 106 080404Google Scholar

    [18]

    Bellomo B, Lo Franco R, Compagno G 2007 Phys. Rev. Lett. 99 160502Google Scholar

    [19]

    Mohamed A B A, Eleuch H, Raymond Ooi C H 2019 Sci. Rep. 9 19632Google Scholar

    [20]

    Deordi G L, Vidiella-Barranco A 2020 Opt. Commun. 475 126233Google Scholar

    [21]

    Pramanik T, Cho Y W, Han S W, Lee S Y, Moon S, Kim Y S 2019 Phys. Rev. A 100 042311Google Scholar

    [22]

    Hu M L 2012 Ann. Phys. 327 2332Google Scholar

    [23]

    Weilenmann M, Dive B, Trillo D, Aguilar E A, Navascués M 2019 Phys. Rev. Lett. 124 200502

    [24]

    Zhou Y 2020 Phys. Rev. A 101 012301Google Scholar

    [25]

    Hanson R, Dobrovitski V V, Feiguin A E, Gywat O, Awschalom D D 2008 Science 320 352Google Scholar

    [26]

    Man Z X, Xia Y J, Rosario L F 2015 Phys. Rev. A 92 012315Google Scholar

    [27]

    Basit A, Ali H, Badshah F, Zhang H Y, Ge G Q 2017 Laser Phys. Lett. 14 125202Google Scholar

    [28]

    Bai X M, Xue N T, Liu N, Li J Q, Liang J Q 2019 Ann. Phys. 531 1900098Google Scholar

    [29]

    Xu K, Zhang G F, Zhou Y, Liu W M 2020 J. Opt. Soc. Am. B 37 933Google Scholar

    [30]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117Google Scholar

    [31]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103(RGoogle Scholar

    [32]

    He Z, Zeng H S 2020 Quantum Inf. Process. 19 299Google Scholar

    [33]

    Qiu L, Tang G, Yang X Q, Wang A 2014 Ann. Phys. 350 137Google Scholar

    [34]

    Groen J P, Ristè D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506Google Scholar

    [35]

    Man Z X, Xia Y J, Rosario L F 2015 Sci. Rep. 5 13843Google Scholar

    [36]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [37]

    Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307Google Scholar

  • 图 1  耦合强度$\varOmega $取不同值时, 负性纠缠度${N_3}$、Bell非定域性$\left| {\left\langle {{B}} \right\rangle } \right| - 1$和纠缠目击$ - {\rm{EWs}}$在强耦合体系$g = 0.5\varGamma $ ((a)—(c))和弱耦合体系$g = 0.2\varGamma $((d)—(f))下随无量纲时间$\varGamma t$的变化曲线. 其中, ${\varGamma _1} = 0$

    Fig. 1.  Time evolution of Negativity ${N_3}$, Bell non-locality $\left| {\left\langle {{B}} \right\rangle } \right| - 1$ and entanglement witnesses $ - {\rm{EWs}}$ as the function of dimensionless time $\varGamma t$ for the different values of coupling strength $\varOmega $ in the strong coupling regime $g = 0.5\varGamma $((a)–(c)) and the weak coupling regime $g = 0.2\varGamma $ ((d)–(f)) with ${\varGamma _1} = 0$.

    图 2  耦合强度$\varOmega $和弱测量强度m取不同值时, 负性纠缠度$N_3$在强耦合体系$g = 0.5\varGamma $ ((a)和(c))和弱耦合体系$g = 0.2\varGamma $((b)和(d))下随无量纲时间$\varGamma t$的变化曲线. 其中, ${\varGamma _1} = 0$

    Fig. 2.  Negativity $N_3$ versus dimensionless time $\varGamma t$ for the different values of coupling strength $\varOmega $ and the weak measurement strength $m$ in the strong coupling regime $g = 0.5\varGamma $((a) and (c)) and the weak coupling regime $g = 0.2\varGamma $((b) and (d)) with ${\varGamma _1} = 0$.

    图 3  Bell函数$\left| {\left\langle {{B}} \right\rangle } \right| - 1$在强耦合体系$g = 0.5\varGamma $ ((a)和(c))和弱耦合体系$g = 0.2\varGamma $((b)和(d))下随无量纲时间$\varGamma t$的变化曲线. 其他参数取值与图2相同

    Fig. 3.  The change of Bell function $\left| {\left\langle {{B}} \right\rangle } \right| - 1$ as a function of $\varGamma t$ in the strong coupling regime $g = 0.5\varGamma $((a) and (c)) and the weak coupling regime $g = 0.2\varGamma $((b) and (d)). The values of other parameters are the same as those in Fig. 2.

    图 4  纠缠目击$ - {\rm{EWs}}$在强 ((a), (c))、弱((b), (d))耦合体系下的动力学行为. 其他参数取值与图2相同

    Fig. 4.  Dynamics of entanglement witnesses $ - {\rm{EWs}}$ in the strong ((a), (b)) and the weak ((c), (d)) coupling regimes. The values of other parameters are the same as those in Fig. 2(a).

    图 5  量子关联在强耦合体系$g = 0.5\varGamma $ ((a)和(c))和弱耦合体系$g = 0.2\varGamma $((b)和(d))下的变化曲线. 其中, (a)和(b)无弱测量操作, (c)和(d)有弱测量操作. 参数$\varOmega = \varGamma $${\varGamma _1} = 0.25\varGamma $

    Fig. 5.  Change curves of quantum correlation in the strong coupling regime $g = 0.5\varGamma $((a) and (c)) and the weak coupling regime $g = 0.2\varGamma $((b) and (d)), where (a) and (b) are the cases without measurement, while (c) and (d) are the cases with measurement. The parameters $\varOmega $ and ${\varGamma _1}$ are set to $\varGamma $ and $0.25\varGamma $, respectively.

    Baidu
  • [1]

    Paneru D, Cohen E, Fickler R, Boyd R W, Karimi E 2020 Rep. Prog. Phys. 83 064001Google Scholar

    [2]

    Su Z F, Tan H S, Li X Y 2020 Phys. Rev. A 101 042112Google Scholar

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [4]

    Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507Google Scholar

    [5]

    Hu X M, Xing W B, Liu B H, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 090503Google Scholar

    [6]

    Sabín C, García-Alcaine G 2007 Eur. Phys. J. D 48 435

    [7]

    Maity A G, Das D, Ghosal A, Roy A, Majumdar A S 2020 Phys. Rev. A 101 042340Google Scholar

    [8]

    Rosset D, Branciard C, Barnea T J, Pütz G, Brunner N, Gisin N 2016 Phys. Rev. Lett. 116 010403Google Scholar

    [9]

    Altintas F, Eryigit R 2010 Phys. Lett. A 374 4283Google Scholar

    [10]

    Anwer H, Nawareg M, Cabello A, Bourennane M 2019 Phys. Rev. A 100 022104Google Scholar

    [11]

    Shin D K, Henson B M, Hodgman S S, Wasak T, Chwedeńczuk J, Truscott A G 2019 Nature 10 4447

    [12]

    Kuo W T, Akhtar A A, Arovas D P, You Y Z 2020 Phys. Rev. B 101 224202Google Scholar

    [13]

    刑贵超, 夏云杰 2018 67 070301Google Scholar

    Xing G C, Xia Y J 2018 Acta Phys. Sin. 67 070301Google Scholar

    [14]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404Google Scholar

    [15]

    López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503Google Scholar

    [16]

    Aguilar G H, Valdés-Hernández A, Davidovich L, Walborn S P, Souto Ribeiro P H 2014 Phys. Rev. Lett. 113 240501Google Scholar

    [17]

    Antonelli C, Shtaif M, Brodsky M 2011 Phys. Rev. Lett. 106 080404Google Scholar

    [18]

    Bellomo B, Lo Franco R, Compagno G 2007 Phys. Rev. Lett. 99 160502Google Scholar

    [19]

    Mohamed A B A, Eleuch H, Raymond Ooi C H 2019 Sci. Rep. 9 19632Google Scholar

    [20]

    Deordi G L, Vidiella-Barranco A 2020 Opt. Commun. 475 126233Google Scholar

    [21]

    Pramanik T, Cho Y W, Han S W, Lee S Y, Moon S, Kim Y S 2019 Phys. Rev. A 100 042311Google Scholar

    [22]

    Hu M L 2012 Ann. Phys. 327 2332Google Scholar

    [23]

    Weilenmann M, Dive B, Trillo D, Aguilar E A, Navascués M 2019 Phys. Rev. Lett. 124 200502

    [24]

    Zhou Y 2020 Phys. Rev. A 101 012301Google Scholar

    [25]

    Hanson R, Dobrovitski V V, Feiguin A E, Gywat O, Awschalom D D 2008 Science 320 352Google Scholar

    [26]

    Man Z X, Xia Y J, Rosario L F 2015 Phys. Rev. A 92 012315Google Scholar

    [27]

    Basit A, Ali H, Badshah F, Zhang H Y, Ge G Q 2017 Laser Phys. Lett. 14 125202Google Scholar

    [28]

    Bai X M, Xue N T, Liu N, Li J Q, Liang J Q 2019 Ann. Phys. 531 1900098Google Scholar

    [29]

    Xu K, Zhang G F, Zhou Y, Liu W M 2020 J. Opt. Soc. Am. B 37 933Google Scholar

    [30]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117Google Scholar

    [31]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103(RGoogle Scholar

    [32]

    He Z, Zeng H S 2020 Quantum Inf. Process. 19 299Google Scholar

    [33]

    Qiu L, Tang G, Yang X Q, Wang A 2014 Ann. Phys. 350 137Google Scholar

    [34]

    Groen J P, Ristè D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506Google Scholar

    [35]

    Man Z X, Xia Y J, Rosario L F 2015 Sci. Rep. 5 13843Google Scholar

    [36]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [37]

    Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307Google Scholar

  • [1] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [2] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [3] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响.  , 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [4] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [5] 王灿灿. 量子纠缠与宇宙学弗里德曼方程.  , 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [6] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [7] 杨莹, 曹怀信. 构造纠缠目击的一般方法.  , 2018, 67(7): 070303. doi: 10.7498/aps.67.20172697
    [8] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数.  , 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [9] 黄江. 弱测量对四个量子比特量子态的保护.  , 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [10] 宗晓岚, 杨名. 多粒子纠缠的保护方案.  , 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [11] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠.  , 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [12] 王盟盟, 权润爱, 邰朝阳, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 通信波长频率一致纠缠光源的频谱测量.  , 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [13] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性.  , 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [14] 卢道明. 弱相干场耦合腔系统中的纠缠特性.  , 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 韩伟, 崔文凯, 张英杰, 夏云杰. 不同环境模型下Bell型纠缠态衰退行为的比较.  , 2012, 61(23): 230302. doi: 10.7498/aps.61.230302
    [17] 霍雅静, 李军刚. 利用因式化纠缠模拟纠缠动力学行为的有效性研究.  , 2012, 61(21): 210304. doi: 10.7498/aps.61.210304
    [18] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [20] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
计量
  • 文章访问数:  5230
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-01-09
  • 上网日期:  2021-05-13
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map