搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导体组合薄膜和相图表征高通量方法

金魁 吴颉

引用本文:
Citation:

高温超导体组合薄膜和相图表征高通量方法

金魁, 吴颉

Combinatorial film and high-throughput characterization methods of phase diagram for high-Tc superconductors

Jin Kui, Wu Jie
PDF
HTML
导出引用
  • 铜氧化物超导体和铁基高温超导体是已知的两类高温超导体, 研究高温超导机理是如今超导领域最具有挑战性的前沿课题. 构建高温超导的高维精确相图、寻找决定超导转变温度的关键物理量可以为高温超导机理做好实验铺垫. 对于铜氧化物高温超导体, 多种自由度的相互关联与耦合使其相图呈现出复杂性与多样性. 现有的研究方法在构建高维“全息”相图及获取定量化物理规律等方面面临着难以克服的困难, 而材料的高通量制备与表征技术可以在相图空间实现参量的线扫描甚至面扫描, 有望快速建立可靠的高温超导高维相图和高温超导关键参量数据库, 并从中提取重要的统计物理规律. 本文从阳离子掺杂、母体氧掺杂、双电层晶体管(静电场/电化学)、磁场等几个调控维度, 回顾了主要基于输运手段获得的铜氧化物电子态相图, 介绍了基于脉冲激光沉积技术和分子束外延技术的组合薄膜生长方法以及与之匹配的跨尺度选区输运测量技术, 展示了高通量技术在高温超导研究中的初步应用. 高通量实验技术与超导研究结合, 逐步形成了新兴的高通量超导研究范式, 将在构建高维精确相图、突破高温超导机理、推进超导材料实用化等方面发挥不可替代的作用.
    Cuprate and iron-based superconductors are known as the only two types of high-Tc superconductors. The mechanism of high-Tc superconductivity is the most challenging issue in the field. Building accurate high-dimensional phase diagram and exploring key parameters that determine Tc, would be essential to the comprehension of high-Tc mechanism. The electronic phase diagrams of cuprate superconductors show complexity and diversity, for the strong coupling and interplay among lattice, orbital, charge and spin degrees of freedom. It is tough to construct a high-dimensional holographic phase diagram and obtain quantitative laws by traditional research methods. Fortunately, the high-throughput synthesis and fast screening techniques enable to probe the phase diagram via line-by-line or map scanning modes, and thereby are expected to obtain high-dimensional phase diagram and key superconducting parameters in a much efficient way. In this article, electronic phase diagrams of cuprate superconductors that are obtained mainly by electrical transport measurements, are briefly summarized in the view of cation substitutions, oxygen variation in the parent compounds, electric double-layer gating (electrostatic/electrochemical manipulation) and magnetic field. We introduce the preparation methods for combinatorial film based on the developed pulsed laser deposition and oxide molecular beam epitaxy techniques, as well as corresponding scale-span high-throughput measurement techniques. These high-throughput techniques have been successfully applied in the research of interface superconductivity, quantum phase transition, and so on. The novel high-throughput superconductivity research mode will play an indispensable role in the construction of the high-dimensional holographic phase diagram, the comprehension of high-Tc mechanism, and practical applications of superconductors.
      通信作者: 金魁, kuijin@iphy.ac.cn ; 吴颉, wujie@westlake.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0300301, 2017YFA0302902, 2017YFA0303003, 2018YFB0704102)、国家自然科学基金(批准号: 11674374, 11834016)、中国科学院战略性先导科技专项(B类)(批准号: XDB25000000)、中国科学院前沿重点项目(批准号: QYZDJ-SSW-SLH001, QYZDB-SSW-SLH008, QYZDY-SSW-SLH001)、北京自然科学基金(批准号: Z190008)和中国科学院创新交叉团队资助的课题
      Corresponding author: Jin Kui, kuijin@iphy.ac.cn ; Wu Jie, wujie@westlake.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300301, 2017YFA0302902, 2017YFA0303003, 2018YFB0704102), the National Natural Science Foundation of China (Grant Nos. 11674374, 11834016), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB25000000), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences, China (Grant Nos. QYZDJ-SSW-SLH001, QYZDB-SSW-SLH008, QYZDY-SSW-SLH001), the Natural Science Foundation of Beijing, China (Grant No. Z190008), and Interdisciplinary Innovation Team of Chinese Academy of Sciences, China
    [1]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [2]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [3]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [4]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [5]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [6]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [7]

    Tokura Y, Takagi H, Uchida S 1989 Nature 337 345Google Scholar

    [8]

    Yuan J, He G, Yang H, Shi Y J, Zhu B Y, Jin K 2015 Sci. China, Ser. G 58 107401Google Scholar

    [9]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [10]

    Timusk T, Statt B 1999 Rep. Prog. Phys. 62 61Google Scholar

    [11]

    Emery V J, Kivelson S A 1995 Nature 374 434Google Scholar

    [12]

    Norman M R, Pines D, Kallin C 2005 Adv. Phys. 54 715Google Scholar

    [13]

    Lv Y F, Wang W L, Peng J P, Ding H, Wang Y, Wang L L, He K, Ji S H, Zhong R D, Schneeloch J, Gu G D, Song C L, Ma X C, Xue Q K 2015 Phys. Rev. Lett. 115 237002Google Scholar

    [14]

    Varma C M 2020 Rev. Mod. Phys. 92 031001Google Scholar

    [15]

    Moriya T, Ueda K 2000 Adv. Phys. 49 555Google Scholar

    [16]

    Abrahams E, Varma C M 2003 Phys. Rev. B 68 094502Google Scholar

    [17]

    Giraldo-Gallo P, Galvis J A, Stegen Z, Modic K A, Balakirev F F, Betts J B, Lian X, Moir C, Riggs S C, Wu J, Bollinger A T, He X, Božović I, Ramshaw B J, McDonald R D, Boebinger G S, Shekhter A 2018 Science 361 479Google Scholar

    [18]

    Vignolle B, Carrington A, Cooper R A, French M M J, Mackenzie A P, Jaudet C, Vignolles D, Proust C, Hussey N E 2008 Nature 455 952Google Scholar

    [19]

    Abdel-Jawad M, Kennett M P, Balicas L, Carrington A, Mackenzie A P, McKenzie R H, Hussey N E 2006 Nat. Phys. 2 821Google Scholar

    [20]

    Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421Google Scholar

    [21]

    Greene R L, Mandal P R, Poniatowski N R, Sarkar T 2020 Annu. Rev. Condens. Matter Phys. 11 213Google Scholar

    [22]

    Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291Google Scholar

    [23]

    Armitage N P, Lu D H, Feng D L, Kim C, Damascelli A, Shen K M, Ronning F, Shen Z X, Onose Y, Taguchi Y, Tokura Y 2001 Phys. Rev. Lett. 86 1126Google Scholar

    [24]

    Matsui H, Takahashi T, Sato T, Terashima K, Ding H, Uefuji T, Yamada K 2007 Phys. Rev. B 75 224514Google Scholar

    [25]

    Dagan Y, Qazilbash M M, Hill C P, Kulkarni V N, Greene R L 2004 Phys. Rev. Lett. 92 167001Google Scholar

    [26]

    Li P C, Behnia K, Greene R L 2007 Phys. Rev. B 75 020506(R)Google Scholar

    [27]

    Jin K, Zhu B Y, Yuan J, Wu H, Zhao L, Wu B X, Han Y, Xu B, Cao L X, Qiu X G, Zhao B R 2007 Phys. Rev. B 75 214501Google Scholar

    [28]

    Jin K, Zhu B Y, Wu B X, Vanacken J, Moschalkov V V, Xu B, Cao L X, Qiu X G, Zhao B R 2008 Phys. Rev. B 77 172503Google Scholar

    [29]

    Jin K, Zhu B Y, Wu B X, Gao L J, Zhao B R 2008 Phys. Rev. B 78 174521Google Scholar

    [30]

    Jin K, Zhang X H, Bach P, Greene R L 2009 Phys. Rev. B 80 012501Google Scholar

    [31]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73Google Scholar

    [32]

    Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. USA 109 8440Google Scholar

    [33]

    Saadaoui H, Salman Z, Luetkens H, Prokscha T, Suter A, MacFarlane W A, Jiang Y, Jin K, Greene R L, Morenzoni E, Kiefl R F 2015 Nat. Commun. 6 6041Google Scholar

    [34]

    Sarkar T, Wei D S, Zhang J, Poniatowski N R, Mandal P R, Kapitulnik A, Greene R L 2020 Science 368 532Google Scholar

    [35]

    Cho J H, Chou F C, Johnston D C 1993 Phys. Rev. Lett. 70 222Google Scholar

    [36]

    Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001Google Scholar

    [37]

    Richard P, Neupane M, Xu Y M, Fournier P, Li S, Dai P C, Wang Z, Ding H 2007 Phys. Rev. Lett. 99 157002Google Scholar

    [38]

    Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2016 Nat. Commun. 7 10567Google Scholar

    [39]

    Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927Google Scholar

    [40]

    贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁 2015 64 217402Google Scholar

    Jia Y L, Yang H, Yuan J, Yu H S, Feng Z P, Xia H L, Shi Y J, He G, Hu W, Long Y W, Zhu B Y, Jin K 2015 Acta Phys. Sin. 64 217402Google Scholar

    [41]

    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148Google Scholar

    [42]

    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 2235Google Scholar

    [43]

    Wei X J, He G, Hu W, Zhang X, Qin M Y, Yuan J, Zhu B Y, Lin Y, Jin K 2019 Chin. Phys. B 28 057401Google Scholar

    [44]

    He G, Wei X J, Zhang X, Shan L, Yuan J, Zhu B Y, Lin Y, Jin K 2017 Phys. Rev. B 96 104518Google Scholar

    [45]

    Bisri S Z, Shimizu S, Nakano M, Iwasa Y 2017 Adv. Mater. 29 1607054Google Scholar

    [46]

    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855Google Scholar

    [47]

    Ueno K, Nakamura S, Shimotani H, Yuan H T, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2011 Nat. Nanotechnol. 6 408Google Scholar

    [48]

    Taniguchi K, Matsumoto A, Shimotani H, Takagi H 2012 Appl. Phys. Lett. 101 042603Google Scholar

    [49]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [50]

    Lu J M, Zheliuk O, Chen Q H, Leermakers I, Hussey N E, Zeitler U, Ye J T 2018 Proc. Natl. Acad. Sci. USA 115 3551Google Scholar

    [51]

    Chen Q H, Lu J M, Liang L, Zeliuk O, Ali A, Ye J T 2018 Adv. Mater. 30 1800399Google Scholar

    [52]

    Chen Q H, Lu J M, Liang L, Zeliuk O, Ali A, Sheng P, Ye J T 2017 Phys. Rev. Lett. 119 147002Google Scholar

    [53]

    Bollinger A T, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I 2011 Nature 472 458Google Scholar

    [54]

    Leng X, Garcia-Barriocanal J, Bose S, Lee Y, Goldman A M 2011 Phys. Rev. Lett. 107 039901Google Scholar

    [55]

    Leng X, Garcia-Barriocanal J, Yang B Y, Lee Y, Kinney J, Goldman A M 2012 Phys. Rev. Lett. 108 067004Google Scholar

    [56]

    Jin K, Hu W, Zhu B Y, Kim D, Yuan J, Sun Y J, Xiang T, Fuhrer M S, Takeuchi I, Greene R L 2016 Sci. Rep. 6 26642Google Scholar

    [57]

    Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524Google Scholar

    [58]

    Lu N P, Zhang P F, Zhang Q H, Qian R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [59]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002Google Scholar

    [60]

    Lei B, Xiang Z J, Lu X J, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q G, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. B 93 060501(R)Google Scholar

    [61]

    Ma L K, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Shang C, Sun Z L, Cui J H, Zhu C S, Wu T, Sun Z, Zou L J, Chen X H 2019 Sci. Bull. 64 653Google Scholar

    [62]

    Cui Y, Zhang G H, Li H B, Lin H, Zhu X Y, Wen H H, Wang G Q, Sun J Z, Ma M W, Li Y, Gong D L, Xie T, Gu Y H, Lie S L, Luo H Q, Yu P, Yu W Q 2018 Sci. Bull. 63 11Google Scholar

    [63]

    Rafique M, Feng Z P, Lin Z F, Wei X J, Liao M H, Zhang D, Jin K, Xue Q K 2019 Nano Lett. 19 7775Google Scholar

    [64]

    Wei X J, Li H B, Zhang Q H, Li D, Qin M Y, Xu L, Hu W, Huan Q, Yu L, Miao J, Yuan J, Zhu B Y, Kusmartseva A, Kusmartsev F V, Silhanek A V, Xiang T, Yu W Q, Lin Y, Gu L, Yu P, Chen Q H, Jin K 2020 Sci. Bull. 65 1607Google Scholar

    [65]

    Zhang X, Yu H S, Chen Q H, Yang R Q, He G, Lin Z Q, Li Q, Yuan J, Zhu B Y, Li L, Yang Y F, Xiang T, Cai R G, Kusmartseva A, Kusmartsev F V, Wang J F, Jin K Phys. Rev. B accepted

    [66]

    Sarkar T, Mandal P R, Higgins J S, Zhao Y, Yu H S, Jin K, Greene R L 2017 Phys. Rev. B 96 155449Google Scholar

    [67]

    Zhang X, Yu H S, He G, Hu W, Yuan J, Zhu B Y, Jin K 2016 Physica C 525-526 18Google Scholar

    [68]

    Sachdev S 2019 Rep. Prog. Phys. 82 014001Google Scholar

    [69]

    Yu H S, He G, Jia Y L, Zhang X, Yuan J, Zhu B Y, Kusmartseva A, Kusmartsev F V, Jin K 2017 Sci. China, Ser. G 60 097411Google Scholar

    [70]

    Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, Yu X H 1989 Phys. Rev. Lett. 62 2317Google Scholar

    [71]

    Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, Timusk T 2004 Nature 430 539Google Scholar

    [72]

    Božović I, He X, Wu J, Bollinger A T 2016 Nature 536 309Google Scholar

    [73]

    Zaanen J 2016 Nature 536 282Google Scholar

    [74]

    Koinuma H, Takeuchi I 2004 Nat. Mater. 3 429Google Scholar

    [75]

    Green M L, Takeuchi I and Hattrick-Simpers J R 2013 J. Appl. Phys. 113 231101

    [76]

    Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Duren J V, Zakutayev A 2017 Appl. Phys. Rev. 4 011105Google Scholar

    [77]

    Xiang X D, Sun X D, Briceho G, Lou Y L, Wang K A, Chang H Y, Wallace-Freedman W G, Chen S W, Schultz P G 1995 Science 268 1738Google Scholar

    [78]

    Wang J S, Yoo Y, Gao C, Takeuchi I, Sun X D, Chang H, Xiang X D, Schultz P G 1998 Science 279 1712Google Scholar

    [79]

    Yu H S, Yuan J, Zhu B Y, Jin K 2017 Sci. China, Ser. G 60 087421Google Scholar

    [80]

    Chang K S, Aronova M, Famodu O, Takeuchi I, Lofland S E, Hattrick-Simpers J, Chang H 2001 Appl. Phys. Lett. 79 4411Google Scholar

    [81]

    Aronova M A, Chang K S, Takeuchi I, Jabs H, Westerheim D, Gonzalez-Martin A, Kim J, Lewis B 2003 Appl. Phys. Lett. 83 1255Google Scholar

    [82]

    Liang Y G, Lee S, Yu H S, Zhang H R, Liang Y J, Zavalij P Y, Chen X, James R D, Bendersky L A, Davydov A V, Zhang X H, Takeuchi I 2020 Nat. Commun. 11 3539Google Scholar

    [83]

    Wu J, Božović I 2015 APL Mater. 3 062401Google Scholar

    [84]

    Bollinger A T, Wu J, Božović I 2016 APL Mater. 4 053205Google Scholar

    [85]

    Jin K, Suchoski R, Fackler S, Zhang Y, Pan X, Greene R L, Takeuchi I 2013 APL Mater. 1 042101Google Scholar

    [86]

    He G, Wei Z X, Feng Z P, Yu X D, Zhu B Y, Liu L, Jin K, Yuan J, Huan Q 2020 Rev. Sci. Instrum. 91 013904Google Scholar

    [87]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar

    [88]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [89]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782Google Scholar

    [90]

    Logvenov G, Gozar A, Bozovic I 2009 Science 326 699Google Scholar

    [91]

    Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanević M, Radović Z, Božović I 2013 Nat. Mater. 12 877Google Scholar

    [92]

    Ando Y, Boebinger G S, Passner A, Kimura T, Kishio K 1995 Phys. Rev. Lett. 75 4662Google Scholar

    [93]

    Ando Y, Boebinger G S, Passner A, Wang N L, Geibel C, Steglich F, Trofimov I E, Balakirev F F 1997 Phys. Rev. B 56 R8530(R)Google Scholar

    [94]

    Wu J, Bollinger A T, Sun Y J, Božović I 2016 Proc. Natl. Acad. Sci. USA 113 4284Google Scholar

    [95]

    Qin M Y, Lin Z F, Wei Z X, Zhu B Y, Yuan J, Takeuchi I, Jin K 2018 Chin. Phys. B 27 127402Google Scholar

    [96]

    Yuan J, Stanev V, Cao C, Takeuchi I, Jin K 2019 Supercond. Sci. Technol. 32 123001Google Scholar

    [97]

    Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Wang H B, Liu M, Zhang G M, Hu J P, Dong X L, Zhou F, Zhou X J, Takeuchi I, Zhao Z X, Jin K 2018 arXiv: 1807.01273 [cond-mat.supr-con]

    [98]

    Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X, Jin K 2018 Sci. Rep. 8 4039Google Scholar

    [99]

    杨桦, 冯中沛, 林泽丰, 胡卫, 秦明阳, 朱北沂, 袁洁, 金魁 2018 67 207416Google Scholar

    Yang H, Feng Z P, Lin Z F, Hu W, Qin M Y, Zhu B Y, Yuan J, Jin K 2018 Acta Phys. Sin. 67 207416Google Scholar

    [100]

    Wei Z X, He G, Hu W, Feng Z P, Wei X J, Ho C Y, Li Q, Yuan J, Xi C Y, Wang Z S, Chen Q H, Zhu B Y, Zhou F, Dong X L, Pi L, Kusmartseva A, Kusmartsev F V, Zhao Z X, Jin K 2019 Phys. Rev. B 100 184509Google Scholar

    [101]

    Li D, Yuan J, Shen P P, Xi C Y, Tian J P, Ni S L, Zhang J S, Wei Z X, Hu W, Li Z A, Yu L, Miao J, Zhou F, Pi L, Jin K, Dong X L, Zhao Z X 2019 Supercond. Sci. Technol. 32 12LT01Google Scholar

  • 图 1  铜氧化物的晶体结构示意图, RE代表稀土元素原子 (a) “214”型空穴型铜氧化物的晶体结构; (b) “214”电子型铜氧化物的晶体结构; (c) YBa2Cu3O7超导体的晶体结构

    Fig. 1.  An illustration of the crystal structure of cuprate superconductors, in which RE denotes rare earth atoms: (a) The crystal structure of hole-doped cuprates; (b) the crystal structure of electron-doped cuprates; (c) the crystal structure of YBa2Cu3O7.

    图 2  空穴型铜氧化物La2–xSrxCuO4和电子型铜氧化物RE2–xCexCuO4的系统电子态相图. 其中SC, AFM, FM分别代表超导相、反铁磁序和铁磁序, 绿色虚线代表费米液体区域的边界. 在左半部分相图中, T*代表赝能隙打开的温度, 但其消失的位置仍有争议. 另外, 欠掺杂区域存在电荷和自旋的局域态, 图中未标出. 在右半部分相图中, 反铁磁序(两条蓝色线分别代表电输运中面内磁电阻各向异性出现的温度和upturn电阻出现的温度)消失于一个与费米面重构相关的量子临界点xFS, 超导相与铁磁序之间存在另一个量子临界点xc, 红色虚线代表奇异金属区域的边界

    Fig. 2.  A systemic illustration of the phase diagram of hole- and electron-doped cuprates, in which SC, AFM, FM denote superconducting phase, antiferromagnetic order and ferromagnetic order, respectively, and green dashed line denotes the boundary of Fermi liquid regime. In the left part of the phase diagram, T* denotes the onset temperature of pseudogap, yet the disappearing temperature is still under debate. Charge and spin localized states exist in the underdoped region (not shown in this figure). In the right part of the phase diagram, antiferromagnetic order, diminishes in a quantum critical point xFS related to the reconstruction of Fermi surface, and the second quantum critical point xc is located at the edges of superconducting phase and ferromagnetic order. Two blue dashed lines associated with AF order are determined from anisotropic in-plane magnetoresistivity (higher) and the upturn of resistivity (lower), respectively. Red dashed line denotes the boundary of strange metal area.

    图 3  PCO与PCCO中TcRH的依赖关系[43]

    Fig. 3.  Tc versus RH for both PCO and PCCO[43].

    图 4  通过退火和离子液体调控两种方法获得Pr2CuO4 ± δ薄膜的超导电性相图[64]. 蓝色区域是Tcc轴晶格常数的依赖关系, 黄色区域(SC I和SC II)是Tc与门电压的依赖关系

    Fig. 4.  Phase diagrams of Pr2CuO4 ± δ on the basis of annealing and gating processes[64]. Side view: the superconducting dome as a function of the c-axis lattice constant; Elevation view: the superconducting dome as a function of gate voltage (SC I and SC II represent two domes in positive and negative voltages, respectively).

    图 5  La2–xCexCuO4 ± δ (x = 0.10)体系电子态随磁场演化相图

    Fig. 5.  The magnetic field dependence of electronic phase diagram of La2–xCexCuO4 ± δ (x = 0.10).

    图 6  连续移动掩模板技术生长二元组合薄膜示意图[79]

    Fig. 6.  An illustration of a typical procedure of binary combi-film growth by using moving mask technique[79].

    图 7  基于分子束外延技术的组合薄膜生长技术示意图 (a) 蒸发源出来的分子束在空间的分布; (b) 石英振荡器所定标的沉积速率的空间分布

    Fig. 7.  An illustration of combinatorial molecular beam epitaxy (COMBE): (a) The sketch of the distribution of atomic beam evaporated from the source; (b) the spatial distribution of the deposition rate calibrated by the quartz oscillator.

    图 8  Fe-B二元成分组合薄膜的不同位置的电阻-温度依赖关系; (b) 64弹性探针阵列多通道电阻测量装置实物照片; (c) 左图中放大区域的交流磁化率测试结果[85]

    Fig. 8.  (a) Mapping of the temperature dependence of resistivity on the Fe-B composition spread film; (b) a 64-pogo-pin-array probe; (c) diamagnetic signal measured by AC susceptibility on the same chip where resistive drop was observed[85].

    图 9  适用于组合薄膜输运性质测试的光刻图案

    Fig. 9.  The lithography pattern for the COMBE samples.

    图 10  LCCO组合薄膜的输运测试结果 (a) 第一次光刻采用的光刻图样; (b) 第一次光刻结束后各个桥路的R-T曲线, 超导转变温度随着掺杂的增加而逐渐降低, 到接近x = 0.19的一端超导电性消失; (c) 第二次光刻采用的光刻图样; (d) 第二次光刻结束后各个通道的R-T曲线; (e) 第三次光刻采用的光刻图样, 此时名义成分分辨率为0.0002; (f) 第三次光刻结束后各个桥路的R-T曲线

    Fig. 10.  The results of electrical transport measurements for LCCO combinatorial film: (a) The pattern in the first step lithography; (b) the R-T curves of different channels in the first step lithography. The Tc decreases with increasing Ce doping; (c) the pattern in the second step lithography; (d) the R-T curves of different channels in the second step lithography; (e) the pattern in the third step lithography, where the nominal resolution of composition is 0.0002; (f) the R-T curves of different channels in the third step lithography.

    图 11  (a) 组合激光分子束外延-扫描隧道显微镜联合系统; 内插: 旋转掩膜制备组合薄膜示意图; (b) 此设备生长出的梯度厚度FeSe薄膜R-T曲线; (c) 梯度厚度FeSe薄膜样品Tc0与厚度的依赖关系; (d) 该设备生长的FeSe薄膜原位原子分辨图

    Fig. 11.  (a) The photograph of the combinatorial laser molecular beam epitaxy system integrated with low temperature scanning tunneling microscopy. Inset: Schematic diagram of the combinatorial film deposition stages; (b) temperature dependence of the resistance of the FeSe film with gradient thickness; (c) thickness dependence of Tc0 for a gradient thickness film; (d) atomic image of FeSe film fabricated in the system.

    图 12  在La2–xSrxCuO4/La2CuO4双层膜中, 界面超导转变温度TO对于掺杂浓度x的依赖关系

    Fig. 12.  In the bilayer of La2–xSrxCuO4/La2CuO4, the superconducting temperature TO, which is the onset temperature of Tc, as a function of the doping level x.

    图 13  在掺杂浓度范围为0.0588 < x < 0.0612的LSCO组合薄膜上测量到的电阻率随温度和掺杂浓度的变化关系

    Fig. 13.  The resistivity as a function of temperature and as a function of chemical doping for x in the range of 0.0588 < x < 0.0612.

    Baidu
  • [1]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [2]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [3]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [4]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [5]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [6]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [7]

    Tokura Y, Takagi H, Uchida S 1989 Nature 337 345Google Scholar

    [8]

    Yuan J, He G, Yang H, Shi Y J, Zhu B Y, Jin K 2015 Sci. China, Ser. G 58 107401Google Scholar

    [9]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [10]

    Timusk T, Statt B 1999 Rep. Prog. Phys. 62 61Google Scholar

    [11]

    Emery V J, Kivelson S A 1995 Nature 374 434Google Scholar

    [12]

    Norman M R, Pines D, Kallin C 2005 Adv. Phys. 54 715Google Scholar

    [13]

    Lv Y F, Wang W L, Peng J P, Ding H, Wang Y, Wang L L, He K, Ji S H, Zhong R D, Schneeloch J, Gu G D, Song C L, Ma X C, Xue Q K 2015 Phys. Rev. Lett. 115 237002Google Scholar

    [14]

    Varma C M 2020 Rev. Mod. Phys. 92 031001Google Scholar

    [15]

    Moriya T, Ueda K 2000 Adv. Phys. 49 555Google Scholar

    [16]

    Abrahams E, Varma C M 2003 Phys. Rev. B 68 094502Google Scholar

    [17]

    Giraldo-Gallo P, Galvis J A, Stegen Z, Modic K A, Balakirev F F, Betts J B, Lian X, Moir C, Riggs S C, Wu J, Bollinger A T, He X, Božović I, Ramshaw B J, McDonald R D, Boebinger G S, Shekhter A 2018 Science 361 479Google Scholar

    [18]

    Vignolle B, Carrington A, Cooper R A, French M M J, Mackenzie A P, Jaudet C, Vignolles D, Proust C, Hussey N E 2008 Nature 455 952Google Scholar

    [19]

    Abdel-Jawad M, Kennett M P, Balicas L, Carrington A, Mackenzie A P, McKenzie R H, Hussey N E 2006 Nat. Phys. 2 821Google Scholar

    [20]

    Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421Google Scholar

    [21]

    Greene R L, Mandal P R, Poniatowski N R, Sarkar T 2020 Annu. Rev. Condens. Matter Phys. 11 213Google Scholar

    [22]

    Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291Google Scholar

    [23]

    Armitage N P, Lu D H, Feng D L, Kim C, Damascelli A, Shen K M, Ronning F, Shen Z X, Onose Y, Taguchi Y, Tokura Y 2001 Phys. Rev. Lett. 86 1126Google Scholar

    [24]

    Matsui H, Takahashi T, Sato T, Terashima K, Ding H, Uefuji T, Yamada K 2007 Phys. Rev. B 75 224514Google Scholar

    [25]

    Dagan Y, Qazilbash M M, Hill C P, Kulkarni V N, Greene R L 2004 Phys. Rev. Lett. 92 167001Google Scholar

    [26]

    Li P C, Behnia K, Greene R L 2007 Phys. Rev. B 75 020506(R)Google Scholar

    [27]

    Jin K, Zhu B Y, Yuan J, Wu H, Zhao L, Wu B X, Han Y, Xu B, Cao L X, Qiu X G, Zhao B R 2007 Phys. Rev. B 75 214501Google Scholar

    [28]

    Jin K, Zhu B Y, Wu B X, Vanacken J, Moschalkov V V, Xu B, Cao L X, Qiu X G, Zhao B R 2008 Phys. Rev. B 77 172503Google Scholar

    [29]

    Jin K, Zhu B Y, Wu B X, Gao L J, Zhao B R 2008 Phys. Rev. B 78 174521Google Scholar

    [30]

    Jin K, Zhang X H, Bach P, Greene R L 2009 Phys. Rev. B 80 012501Google Scholar

    [31]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73Google Scholar

    [32]

    Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. USA 109 8440Google Scholar

    [33]

    Saadaoui H, Salman Z, Luetkens H, Prokscha T, Suter A, MacFarlane W A, Jiang Y, Jin K, Greene R L, Morenzoni E, Kiefl R F 2015 Nat. Commun. 6 6041Google Scholar

    [34]

    Sarkar T, Wei D S, Zhang J, Poniatowski N R, Mandal P R, Kapitulnik A, Greene R L 2020 Science 368 532Google Scholar

    [35]

    Cho J H, Chou F C, Johnston D C 1993 Phys. Rev. Lett. 70 222Google Scholar

    [36]

    Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001Google Scholar

    [37]

    Richard P, Neupane M, Xu Y M, Fournier P, Li S, Dai P C, Wang Z, Ding H 2007 Phys. Rev. Lett. 99 157002Google Scholar

    [38]

    Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2016 Nat. Commun. 7 10567Google Scholar

    [39]

    Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927Google Scholar

    [40]

    贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁 2015 64 217402Google Scholar

    Jia Y L, Yang H, Yuan J, Yu H S, Feng Z P, Xia H L, Shi Y J, He G, Hu W, Long Y W, Zhu B Y, Jin K 2015 Acta Phys. Sin. 64 217402Google Scholar

    [41]

    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148Google Scholar

    [42]

    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 2235Google Scholar

    [43]

    Wei X J, He G, Hu W, Zhang X, Qin M Y, Yuan J, Zhu B Y, Lin Y, Jin K 2019 Chin. Phys. B 28 057401Google Scholar

    [44]

    He G, Wei X J, Zhang X, Shan L, Yuan J, Zhu B Y, Lin Y, Jin K 2017 Phys. Rev. B 96 104518Google Scholar

    [45]

    Bisri S Z, Shimizu S, Nakano M, Iwasa Y 2017 Adv. Mater. 29 1607054Google Scholar

    [46]

    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855Google Scholar

    [47]

    Ueno K, Nakamura S, Shimotani H, Yuan H T, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2011 Nat. Nanotechnol. 6 408Google Scholar

    [48]

    Taniguchi K, Matsumoto A, Shimotani H, Takagi H 2012 Appl. Phys. Lett. 101 042603Google Scholar

    [49]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [50]

    Lu J M, Zheliuk O, Chen Q H, Leermakers I, Hussey N E, Zeitler U, Ye J T 2018 Proc. Natl. Acad. Sci. USA 115 3551Google Scholar

    [51]

    Chen Q H, Lu J M, Liang L, Zeliuk O, Ali A, Ye J T 2018 Adv. Mater. 30 1800399Google Scholar

    [52]

    Chen Q H, Lu J M, Liang L, Zeliuk O, Ali A, Sheng P, Ye J T 2017 Phys. Rev. Lett. 119 147002Google Scholar

    [53]

    Bollinger A T, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I 2011 Nature 472 458Google Scholar

    [54]

    Leng X, Garcia-Barriocanal J, Bose S, Lee Y, Goldman A M 2011 Phys. Rev. Lett. 107 039901Google Scholar

    [55]

    Leng X, Garcia-Barriocanal J, Yang B Y, Lee Y, Kinney J, Goldman A M 2012 Phys. Rev. Lett. 108 067004Google Scholar

    [56]

    Jin K, Hu W, Zhu B Y, Kim D, Yuan J, Sun Y J, Xiang T, Fuhrer M S, Takeuchi I, Greene R L 2016 Sci. Rep. 6 26642Google Scholar

    [57]

    Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524Google Scholar

    [58]

    Lu N P, Zhang P F, Zhang Q H, Qian R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [59]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002Google Scholar

    [60]

    Lei B, Xiang Z J, Lu X J, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q G, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. B 93 060501(R)Google Scholar

    [61]

    Ma L K, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Shang C, Sun Z L, Cui J H, Zhu C S, Wu T, Sun Z, Zou L J, Chen X H 2019 Sci. Bull. 64 653Google Scholar

    [62]

    Cui Y, Zhang G H, Li H B, Lin H, Zhu X Y, Wen H H, Wang G Q, Sun J Z, Ma M W, Li Y, Gong D L, Xie T, Gu Y H, Lie S L, Luo H Q, Yu P, Yu W Q 2018 Sci. Bull. 63 11Google Scholar

    [63]

    Rafique M, Feng Z P, Lin Z F, Wei X J, Liao M H, Zhang D, Jin K, Xue Q K 2019 Nano Lett. 19 7775Google Scholar

    [64]

    Wei X J, Li H B, Zhang Q H, Li D, Qin M Y, Xu L, Hu W, Huan Q, Yu L, Miao J, Yuan J, Zhu B Y, Kusmartseva A, Kusmartsev F V, Silhanek A V, Xiang T, Yu W Q, Lin Y, Gu L, Yu P, Chen Q H, Jin K 2020 Sci. Bull. 65 1607Google Scholar

    [65]

    Zhang X, Yu H S, Chen Q H, Yang R Q, He G, Lin Z Q, Li Q, Yuan J, Zhu B Y, Li L, Yang Y F, Xiang T, Cai R G, Kusmartseva A, Kusmartsev F V, Wang J F, Jin K Phys. Rev. B accepted

    [66]

    Sarkar T, Mandal P R, Higgins J S, Zhao Y, Yu H S, Jin K, Greene R L 2017 Phys. Rev. B 96 155449Google Scholar

    [67]

    Zhang X, Yu H S, He G, Hu W, Yuan J, Zhu B Y, Jin K 2016 Physica C 525-526 18Google Scholar

    [68]

    Sachdev S 2019 Rep. Prog. Phys. 82 014001Google Scholar

    [69]

    Yu H S, He G, Jia Y L, Zhang X, Yuan J, Zhu B Y, Kusmartseva A, Kusmartsev F V, Jin K 2017 Sci. China, Ser. G 60 097411Google Scholar

    [70]

    Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, Yu X H 1989 Phys. Rev. Lett. 62 2317Google Scholar

    [71]

    Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, Timusk T 2004 Nature 430 539Google Scholar

    [72]

    Božović I, He X, Wu J, Bollinger A T 2016 Nature 536 309Google Scholar

    [73]

    Zaanen J 2016 Nature 536 282Google Scholar

    [74]

    Koinuma H, Takeuchi I 2004 Nat. Mater. 3 429Google Scholar

    [75]

    Green M L, Takeuchi I and Hattrick-Simpers J R 2013 J. Appl. Phys. 113 231101

    [76]

    Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Duren J V, Zakutayev A 2017 Appl. Phys. Rev. 4 011105Google Scholar

    [77]

    Xiang X D, Sun X D, Briceho G, Lou Y L, Wang K A, Chang H Y, Wallace-Freedman W G, Chen S W, Schultz P G 1995 Science 268 1738Google Scholar

    [78]

    Wang J S, Yoo Y, Gao C, Takeuchi I, Sun X D, Chang H, Xiang X D, Schultz P G 1998 Science 279 1712Google Scholar

    [79]

    Yu H S, Yuan J, Zhu B Y, Jin K 2017 Sci. China, Ser. G 60 087421Google Scholar

    [80]

    Chang K S, Aronova M, Famodu O, Takeuchi I, Lofland S E, Hattrick-Simpers J, Chang H 2001 Appl. Phys. Lett. 79 4411Google Scholar

    [81]

    Aronova M A, Chang K S, Takeuchi I, Jabs H, Westerheim D, Gonzalez-Martin A, Kim J, Lewis B 2003 Appl. Phys. Lett. 83 1255Google Scholar

    [82]

    Liang Y G, Lee S, Yu H S, Zhang H R, Liang Y J, Zavalij P Y, Chen X, James R D, Bendersky L A, Davydov A V, Zhang X H, Takeuchi I 2020 Nat. Commun. 11 3539Google Scholar

    [83]

    Wu J, Božović I 2015 APL Mater. 3 062401Google Scholar

    [84]

    Bollinger A T, Wu J, Božović I 2016 APL Mater. 4 053205Google Scholar

    [85]

    Jin K, Suchoski R, Fackler S, Zhang Y, Pan X, Greene R L, Takeuchi I 2013 APL Mater. 1 042101Google Scholar

    [86]

    He G, Wei Z X, Feng Z P, Yu X D, Zhu B Y, Liu L, Jin K, Yuan J, Huan Q 2020 Rev. Sci. Instrum. 91 013904Google Scholar

    [87]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar

    [88]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [89]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782Google Scholar

    [90]

    Logvenov G, Gozar A, Bozovic I 2009 Science 326 699Google Scholar

    [91]

    Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanević M, Radović Z, Božović I 2013 Nat. Mater. 12 877Google Scholar

    [92]

    Ando Y, Boebinger G S, Passner A, Kimura T, Kishio K 1995 Phys. Rev. Lett. 75 4662Google Scholar

    [93]

    Ando Y, Boebinger G S, Passner A, Wang N L, Geibel C, Steglich F, Trofimov I E, Balakirev F F 1997 Phys. Rev. B 56 R8530(R)Google Scholar

    [94]

    Wu J, Bollinger A T, Sun Y J, Božović I 2016 Proc. Natl. Acad. Sci. USA 113 4284Google Scholar

    [95]

    Qin M Y, Lin Z F, Wei Z X, Zhu B Y, Yuan J, Takeuchi I, Jin K 2018 Chin. Phys. B 27 127402Google Scholar

    [96]

    Yuan J, Stanev V, Cao C, Takeuchi I, Jin K 2019 Supercond. Sci. Technol. 32 123001Google Scholar

    [97]

    Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Wang H B, Liu M, Zhang G M, Hu J P, Dong X L, Zhou F, Zhou X J, Takeuchi I, Zhao Z X, Jin K 2018 arXiv: 1807.01273 [cond-mat.supr-con]

    [98]

    Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X, Jin K 2018 Sci. Rep. 8 4039Google Scholar

    [99]

    杨桦, 冯中沛, 林泽丰, 胡卫, 秦明阳, 朱北沂, 袁洁, 金魁 2018 67 207416Google Scholar

    Yang H, Feng Z P, Lin Z F, Hu W, Qin M Y, Zhu B Y, Yuan J, Jin K 2018 Acta Phys. Sin. 67 207416Google Scholar

    [100]

    Wei Z X, He G, Hu W, Feng Z P, Wei X J, Ho C Y, Li Q, Yuan J, Xi C Y, Wang Z S, Chen Q H, Zhu B Y, Zhou F, Dong X L, Pi L, Kusmartseva A, Kusmartsev F V, Zhao Z X, Jin K 2019 Phys. Rev. B 100 184509Google Scholar

    [101]

    Li D, Yuan J, Shen P P, Xi C Y, Tian J P, Ni S L, Zhang J S, Wei Z X, Hu W, Li Z A, Yu L, Miao J, Zhou F, Pi L, Jin K, Dong X L, Zhao Z X 2019 Supercond. Sci. Technol. 32 12LT01Google Scholar

  • [1] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相.  , 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [2] 胡江平. 探索非常规高温超导体.  , 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [3] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介.  , 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [4] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展.  , 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [5] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程.  , 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [6] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究.  , 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [7] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算.  , 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [8] 贺丽, 胡翔, 尹澜, 许恒毅, 徐晓林, 郭建栋, 李传义, 尹道乐. 高温超导体霍尔电阻和霍尔角在涡旋玻璃相变附近的普适标度律及统一霍尔电阻方程.  , 2009, 58(1): 417-420. doi: 10.7498/aps.58.417
    [9] 吴建宝. 层状铜氧化物超导体的有限温Landau理论.  , 2006, 55(4): 2049-2056. doi: 10.7498/aps.55.2049
    [10] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性.  , 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [11] 胡立发, ASulpice, PDixador, 张平祥, 李成山, 纪平, 滕鑫康, 汪金荣, 冯勇, 周廉. Bi2223带材的临界电流及交流损耗研究.  , 2002, 51(8): 1826-1831. doi: 10.7498/aps.51.1826
    [12] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜.  , 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [13] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗.  , 2001, 50(7): 1359-1365. doi: 10.7498/aps.50.1359
    [14] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究.  , 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [15] 王勇刚, 逄焕刚, 刘楣. 高温超导体的电子比热研究.  , 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [16] 瞿 海, 周世平. 高温超导体混合态磁通涡旋结构.  , 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [17] 金光海, 章立源. 对高温氧化物超导体的黄金坐标分析.  , 1992, 41(6): 999-1004. doi: 10.7498/aps.41.999
    [18] 赵建国, 李方华, 陈维, 解思深, 曹宁, 郑家祺. Nd-Ba-Cu-O高温超导体的高分辨电子显微术研究.  , 1989, 38(3): 508-510. doi: 10.7498/aps.38.508
    [19] 丁尚武, 侯磊. 氧化物高温超导体的双极化子解释的可能性.  , 1988, 37(7): 1180-1182. doi: 10.7498/aps.37.1180
    [20] 邢定钰, 龚昌德. 正常导体-超导体(n-s)多层薄膜系统的电子态.  , 1982, 31(5): 633-645. doi: 10.7498/aps.31.633
计量
  • 文章访问数:  10317
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 修回日期:  2020-12-20
  • 上网日期:  2020-12-24
  • 刊出日期:  2021-01-05

/

返回文章
返回
Baidu
map