-
低噪声的微波频率在雷达, 长基线干涉仪等领域有重要应用. 基于光学频率梳产生的微波信号的相位噪声在1 Hz频偏处低于–100 dBc/Hz, 在高频( > 100 kHz)处低于–170 dBc/Hz, 是目前所有的微波频率产生技术中噪声最低的. 文章介绍了光学频率梳产生微波频率的基本原理, 对基于光梳产生的微波频率信号的各类噪声和抑制噪声的技术进行了分析和总结. 随后对低噪声的测量方法进行介绍, 并展示了几种典型的微波频率产生实验装置和结果. 随着光学频率梳和噪声抑制技术的不断提升, 基于光梳的极低噪声微波频率源将有更广泛的应用前景和应用领域.Low noise microwave frequency has important applications in radar, long baseline interferometer and other fields. The phase noise of microwave signal generated by optical frequency comb is lower than –100 dBc/Hz at 1 Hz frequency offset and –170 dBc/ Hz at high frequencies (> 100 kHz), which is the lowest in the noise produced by all existing microwave frequency generation technologies. This paper introduces the basic principle of optical frequency comb generating microwave frequency, analyzes and summarizes various kinds of noise of microwave frequency signals and noise suppressing technologies. Then the low noise measuring methods are introduced, and several typical experimental devices generating microwave frequency and the obtained results are described. With the continuous improvement of optical frequency comb and noise suppression technology, microwave frequency source with very low noise will have wider application prospects and application fields.
-
Keywords:
- optical frequency comb /
- microwave frequency generation /
- microwave photonics /
- phase noise
[1] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar
[2] Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar
[3] Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar
[4] Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hansch T W, Manescau A 2007 Mon. Not. Roy. Astron. Soc. 380 839Google Scholar
[5] Schiller S 2002 Opt. Lett. 27 766Google Scholar
[6] Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Ann-Manuf. Technol. 59 555Google Scholar
[7] Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W, Krausz F 2003 Nature 421 611Google Scholar
[8] Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar
[9] Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435
[10] Scheer J A, IEEE 1990 Coherent Radar System Performance Estimation (New York: IEEE) pp125−128
[11] Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar
[12] Kim J, Cox J A, Chen J, Kaertner F X 2008 Nat. Photonics 2 733Google Scholar
[13] Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L 2008 Opt. Express 16 4130Google Scholar
[14] Yao Y, Chen X F, Dai Y T, Xie S Z 2006 IEEE Photonics Technol. Lett. 18 187Google Scholar
[15] Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar
[16] Ivanov E N, McFerran J J, Diddams S A, Hollberg L 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 736Google Scholar
[17] Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersale Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar
[18] Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 1411053
[19] Diddams S A, Kirchner M, Fortier T, Braje D, Weiner A M, Hollberg L 2009 Opt. Express 17 3331Google Scholar
[20] Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G, Le Coq Y 2010 Appl. Phys. Lett. 96 2111053
[21] Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425Google Scholar
[22] Swann W C, Baumann E, Giorgetta F R, Newbury N R 2011 Opt. Express 19 24387Google Scholar
[23] Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar
[24] Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y, Diddams S A 2011 Opt. Lett. 36 3260Google Scholar
[25] Fortier T M, Nelson C W, Hati A, Quinlan F, Taylor J, Jiang H, Chou C W, Rosenband T, Lemke N, Ludlow A, Howe D, Oates C W, Diddams S A 2012 Appl. Phys. Lett. 100 2311113
[26] Jung K, Kim J 2012 Opt. Lett. 37 2958Google Scholar
[27] Meyer S A, Fortier T M, Lecomte S, Diddams S A 2013 Appl. Phys. B-Lasers Opt. 112 565Google Scholar
[28] Jung K, Shin J, Kim J 2013 IEEE Photonics J. 5 55009066Google Scholar
[29] Fortier T M, Quinlan F, Hati A, Nelson C, Taylor J A, Fu Y, Campbell J, Diddams S A 2013 Opt. Lett. 38 1712Google Scholar
[30] Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroute C, Kersale Y 2015 Appl. Optics 54 3682Google Scholar
[31] Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641Google Scholar
[32] Millo J, Magalhaes D V, Mandache C, Le Coq Y, English E M L, Westergaard P G, Lodewyck J, Bize S, Lemonde P, Santarelli G 2009 Phys. Rev. A 79 053829Google Scholar
[33] Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 515 8
[34] Newbury N R, Washburn B R 2005 IEEE J. Quant. Electron. 41 1388Google Scholar
[35] Wang H-B, Han H-N, Zhang Z-Y, Shao X-D, Zhu J-F, Wei Z-Y 2020 Chin. Phys. B 29 030601Google Scholar
[36] Pang L H, Han H N, Zhao Z B, Liu W J, Wei Z Y 2016 Opt. Express 24 28994
[37] Yao Y, Jiang Y, Yu H, Bi Z, Ma L 2016 Natl. Sci. Rev. 3 463Google Scholar
[38] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photonics 13 714Google Scholar
[39] Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar
[40] Li Z, Fu Y, Piels M, Pan H, Beling A, Bowers J E, Campbell J C 2011 Opt. Express 19 385Google Scholar
[41] Quinlan F, Fortier T M, Jiang H, Hati A, Nelson C, Fu Y, Campbell J C, Diddams S A 2013 Nat. Photonics 7 290Google Scholar
[42] Endo M, Shoji T D, Schibli T R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1102413Google Scholar
[43] 韩海年, 魏志义 2016 物理 45 449Google Scholar
Han H N, Wei Z Y 2016 Physics 45 449Google Scholar
[44] Xie X P, Bouchand R, Nicolodi D, Giunta M, Hansel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R, Le Coq Y 2017 Nature Photonics 11 44Google Scholar
[45] Lee D, Nakamura T, Campbell J C, Diddams S A, Quinlan F Conference on Lasers and Electro-Optics Washington, DC, 2020/05/10 pSF1 G.7
[46] Jiang H F, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar
[47] Quinlan F, Baynes F N, Fortier T M, Zhou Q G, Cross A, Campbell J C, Diddams S A 2014 Opt. Lett. 39 1581Google Scholar
[48] Walls W F, IEEE 1992 Cross-Correlation Phase Noise Measurements (New York: IEEE) pp257−261
[49] Rubiola E, Giordano V 2000 Rev. Sci. Instrum. 71 Pii [s0034-6748(00)01708-1] 3085
[50] Hati A, Nelson C W, Howe D A 2016 Rev. Sci. Instrum. 87 0347088
[51] Ivanov E N, Tobar M E, Woode R A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1526Google Scholar
[52] Rubiola E, Vernotte F 2010 Physics
[53] Diddams S A, Bartels A, Ramond T M, Oates C W, Bize S, Curtis E A, Bergquist J C, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1072Google Scholar
[54] McFerran J J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A, Hollberg L 2005 Electronics Lett. 41 650Google Scholar
[55] Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T, Kippenberg T J 2020 Nat. Commun. 11 3748Google Scholar
[56] Ivanov E N, Tobar M E 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 263Google Scholar
[57] Fluhr C, Grop S, Dubois B, Kersale Y, Rubiola E, Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 915Google Scholar
[58] Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K 2018 Metrologia 55 789Google Scholar
[59] Gill P 2011 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369 4109
[60] Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X J, Campbell J C, McGrew W F, Zhang X G, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar
[61] Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar
[62] Kovach A, Chen D Y, He J H, Choi H, Dogan A H, Ghasemkhani M, Taheri H, Armani A M 2020 Adv. Opt. Photonics 12 135Google Scholar
[63] Wang W, Wang L, Zhang W 2020 Advanced Photonics 2 1
[64] Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microw. Theory Techn. 59 2978Google Scholar
[65] Wolf P, Bize S, Clairon A, Luiten A N, Santarelli G, Tobar M E 2003 Phys. Rev. Lett. 90 060402Google Scholar
[66] Stanwix P L, Tobar M E, Wolf P, Susli M, Locke C R, Ivanov E N, Winterflood J, van Kann F 2005 Phys. Rev. Lett. 95 0404044
[67] Rioja M, Dodson R, Asaki Y, Hartnett J, Tingay S 2012 Astron. J. 144 121Google Scholar
[68] Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J, Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887Google Scholar
[69] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar
[70] Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nat. Photonics 1 463Google Scholar
[71] Deakin C, Liu Z X 2020 Opt. Lett. 45 173Google Scholar
-
图 4 (a)掺铒光梳分频产生的10 GHz微波信号的相位噪声; (b)
${f_{{\rm{ceo}}}}$ 锁定的剩余噪声; (c)${f_{\rm{b}}}$ 锁定的剩余噪声; (d) RIN经由光电探测器转换为的相位噪声[24]Fig. 4. (a) Phase noise of 10 GHz microwave signal generated by erbium-doped optical comb; (b)
${f_{{\rm{ceo}}}}$ residual noise; (c)${f_{\rm{b}}}$ residual noise; (d) phase noise converted by RIN via photodetector[24] -
[1] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar
[2] Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar
[3] Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar
[4] Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hansch T W, Manescau A 2007 Mon. Not. Roy. Astron. Soc. 380 839Google Scholar
[5] Schiller S 2002 Opt. Lett. 27 766Google Scholar
[6] Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Ann-Manuf. Technol. 59 555Google Scholar
[7] Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W, Krausz F 2003 Nature 421 611Google Scholar
[8] Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar
[9] Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435
[10] Scheer J A, IEEE 1990 Coherent Radar System Performance Estimation (New York: IEEE) pp125−128
[11] Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar
[12] Kim J, Cox J A, Chen J, Kaertner F X 2008 Nat. Photonics 2 733Google Scholar
[13] Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L 2008 Opt. Express 16 4130Google Scholar
[14] Yao Y, Chen X F, Dai Y T, Xie S Z 2006 IEEE Photonics Technol. Lett. 18 187Google Scholar
[15] Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar
[16] Ivanov E N, McFerran J J, Diddams S A, Hollberg L 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 736Google Scholar
[17] Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersale Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar
[18] Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 1411053
[19] Diddams S A, Kirchner M, Fortier T, Braje D, Weiner A M, Hollberg L 2009 Opt. Express 17 3331Google Scholar
[20] Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G, Le Coq Y 2010 Appl. Phys. Lett. 96 2111053
[21] Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425Google Scholar
[22] Swann W C, Baumann E, Giorgetta F R, Newbury N R 2011 Opt. Express 19 24387Google Scholar
[23] Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar
[24] Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y, Diddams S A 2011 Opt. Lett. 36 3260Google Scholar
[25] Fortier T M, Nelson C W, Hati A, Quinlan F, Taylor J, Jiang H, Chou C W, Rosenband T, Lemke N, Ludlow A, Howe D, Oates C W, Diddams S A 2012 Appl. Phys. Lett. 100 2311113
[26] Jung K, Kim J 2012 Opt. Lett. 37 2958Google Scholar
[27] Meyer S A, Fortier T M, Lecomte S, Diddams S A 2013 Appl. Phys. B-Lasers Opt. 112 565Google Scholar
[28] Jung K, Shin J, Kim J 2013 IEEE Photonics J. 5 55009066Google Scholar
[29] Fortier T M, Quinlan F, Hati A, Nelson C, Taylor J A, Fu Y, Campbell J, Diddams S A 2013 Opt. Lett. 38 1712Google Scholar
[30] Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroute C, Kersale Y 2015 Appl. Optics 54 3682Google Scholar
[31] Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641Google Scholar
[32] Millo J, Magalhaes D V, Mandache C, Le Coq Y, English E M L, Westergaard P G, Lodewyck J, Bize S, Lemonde P, Santarelli G 2009 Phys. Rev. A 79 053829Google Scholar
[33] Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 515 8
[34] Newbury N R, Washburn B R 2005 IEEE J. Quant. Electron. 41 1388Google Scholar
[35] Wang H-B, Han H-N, Zhang Z-Y, Shao X-D, Zhu J-F, Wei Z-Y 2020 Chin. Phys. B 29 030601Google Scholar
[36] Pang L H, Han H N, Zhao Z B, Liu W J, Wei Z Y 2016 Opt. Express 24 28994
[37] Yao Y, Jiang Y, Yu H, Bi Z, Ma L 2016 Natl. Sci. Rev. 3 463Google Scholar
[38] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photonics 13 714Google Scholar
[39] Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar
[40] Li Z, Fu Y, Piels M, Pan H, Beling A, Bowers J E, Campbell J C 2011 Opt. Express 19 385Google Scholar
[41] Quinlan F, Fortier T M, Jiang H, Hati A, Nelson C, Fu Y, Campbell J C, Diddams S A 2013 Nat. Photonics 7 290Google Scholar
[42] Endo M, Shoji T D, Schibli T R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1102413Google Scholar
[43] 韩海年, 魏志义 2016 物理 45 449Google Scholar
Han H N, Wei Z Y 2016 Physics 45 449Google Scholar
[44] Xie X P, Bouchand R, Nicolodi D, Giunta M, Hansel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R, Le Coq Y 2017 Nature Photonics 11 44Google Scholar
[45] Lee D, Nakamura T, Campbell J C, Diddams S A, Quinlan F Conference on Lasers and Electro-Optics Washington, DC, 2020/05/10 pSF1 G.7
[46] Jiang H F, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar
[47] Quinlan F, Baynes F N, Fortier T M, Zhou Q G, Cross A, Campbell J C, Diddams S A 2014 Opt. Lett. 39 1581Google Scholar
[48] Walls W F, IEEE 1992 Cross-Correlation Phase Noise Measurements (New York: IEEE) pp257−261
[49] Rubiola E, Giordano V 2000 Rev. Sci. Instrum. 71 Pii [s0034-6748(00)01708-1] 3085
[50] Hati A, Nelson C W, Howe D A 2016 Rev. Sci. Instrum. 87 0347088
[51] Ivanov E N, Tobar M E, Woode R A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1526Google Scholar
[52] Rubiola E, Vernotte F 2010 Physics
[53] Diddams S A, Bartels A, Ramond T M, Oates C W, Bize S, Curtis E A, Bergquist J C, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1072Google Scholar
[54] McFerran J J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A, Hollberg L 2005 Electronics Lett. 41 650Google Scholar
[55] Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T, Kippenberg T J 2020 Nat. Commun. 11 3748Google Scholar
[56] Ivanov E N, Tobar M E 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 263Google Scholar
[57] Fluhr C, Grop S, Dubois B, Kersale Y, Rubiola E, Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 915Google Scholar
[58] Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K 2018 Metrologia 55 789Google Scholar
[59] Gill P 2011 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369 4109
[60] Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X J, Campbell J C, McGrew W F, Zhang X G, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar
[61] Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar
[62] Kovach A, Chen D Y, He J H, Choi H, Dogan A H, Ghasemkhani M, Taheri H, Armani A M 2020 Adv. Opt. Photonics 12 135Google Scholar
[63] Wang W, Wang L, Zhang W 2020 Advanced Photonics 2 1
[64] Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microw. Theory Techn. 59 2978Google Scholar
[65] Wolf P, Bize S, Clairon A, Luiten A N, Santarelli G, Tobar M E 2003 Phys. Rev. Lett. 90 060402Google Scholar
[66] Stanwix P L, Tobar M E, Wolf P, Susli M, Locke C R, Ivanov E N, Winterflood J, van Kann F 2005 Phys. Rev. Lett. 95 0404044
[67] Rioja M, Dodson R, Asaki Y, Hartnett J, Tingay S 2012 Astron. J. 144 121Google Scholar
[68] Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J, Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887Google Scholar
[69] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar
[70] Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nat. Photonics 1 463Google Scholar
[71] Deakin C, Liu Z X 2020 Opt. Lett. 45 173Google Scholar
计量
- 文章访问数: 8686
- PDF下载量: 461
- 被引次数: 0