-
飞秒光纤激光器具有平均功率高、散热性能佳、光束质量好和空间体积小等优势, 在基础研究、工业加工、生物医疗等方面得到越来越广泛的应用. 相干合成技术能够有效克服光纤中有害的非线性效应和热效应的影响, 进一步提高飞秒光纤激光器输出的脉冲能量和平均功率. 本文介绍高功率飞秒光纤激光器相干合成的基本技术路线, 重点阐述相干合成技术中关于填充孔径相干合成与平铺孔径相干合成的最新研究进展, 并详细介绍相干合成技术中不同类型主动相位锁定技术的基本原理. 相信在不远的将来, 飞秒光纤激光相干合成系统的单脉冲能量和平均功率将不断攀升, 从而开创许多崭新的研究领域.Widely employed in fundamental research, industrial processing, and biomedicine, femtosecond fiber lasers exhibit many attractive features such as high average power, good heat dissipation, excellent beam quality, and compact footprint. Coherent combining technology can effectively suppress the detrimental nonlinear and thermal effects in the fiber amplifiers, and therefore further increase the output pulse energy and average power of femtosecond fiber lasers. In this article, we mainly discuss different coherent combining techniques in high-power ultrafast Yb-fiber laser systems and the relevant phase-locking methods. We believe that the advent of new coherent combining techniques will further improve the average power and pulse energy of femtosecond fiber laser systems, thereby opening up some new research areas.
-
Keywords:
- ultrashort pulse /
- fiber laser /
- coherent combination /
- high average power
[1] Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 I45Google Scholar
[2] Leemans W, Chou W, Uesaka M 2011 ICFA Beam Dyn. Newsl. 56 10
[3] Abhari R S, Rollinger B, Giovannini A Z, Morris O, Henderson I, Ellwi S S 2012 J. Micro/Nanolithogr. MEMS MOEMS 11 021114Google Scholar
[4] Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar
[5] Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar
[6] Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar
[7] Galvanauskas A, Fermann M, Harter D 1994 Opt. Lett. 19 1201Google Scholar
[8] Jauregui C, Stihler C, Limpert J 2020 Adv. Opt. Photonics 12 429Google Scholar
[9] Zervas M N 2019 Opt. Express 27 19019Google Scholar
[10] Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233Google Scholar
[11] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar
[12] Wan P, Yang L M, Liu J 2013 Opt. Express 21 29854Google Scholar
[13] 程勇, 刘洋, 许立新 2007 红外与激光工程 36 163Google Scholar
Cheng Y, Liu Y, Xu L X 2007 Infrared and Laser Engineering 36 163Google Scholar
[14] 王小林, 周朴, 粟荣涛, 马鹏飞, 陶汝茂, 马阎星, 许晓军, 刘泽金 2017 中国激光 44 0201001Google Scholar
Wang X L, Zhou P, Li R T, Ma P F, Tao R M, Ma Y X, Xu X J, Liu Z J 2017 Chin. J. Laser 44 0201001Google Scholar
[15] Mourou G A, Hulin D, Galvanauskas A 2006 AIP Conf. Proc. Varenna, Italy, September 19−24, 2005 pp152–163
[16] Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303Google Scholar
[17] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66Google Scholar
[18] Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nat. Photonics 7 258Google Scholar
[19] Chang G, Wei Z 2020 Science 23 101101Google Scholar
[20] Stark H, Buldt J, Müller M, Klenke A, Tünnermann A, Limpert J 2019 Opt. Lett. 44 5529Google Scholar
[21] Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar
[22] Hanna M, Guichard F, Zaouter Y, Papadopoulos D N, Druon F, Georges P 2016 J. Phys. B: At. Mol. Opt. Phys 49 062004Google Scholar
[23] Klenke A, Müller M, Stark H, Kienel M, Jauregui C, Tünnermann A, Limpert J 2018 IEEE J. Sel. Top. Quantum Electron. 24 1Google Scholar
[24] 杨康文, 郝强, 曾和平 2018 红外与激光工程 47 103004Google Scholar
Yang K W, Hao Q, Zeng H P 2018 Infrared and Laser Engineering 47 103004Google Scholar
[25] 王郁飞, 李雷, 赵鹭明 2018 红外与激光工程 47 803010Google Scholar
Wang Y F, Li L, Zhao L M 2018 Infrared and Laser Engineering 47 803010Google Scholar
[26] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞 2018 红外与激光工程 47 0103001Google Scholar
Su R T, Zhou P, Zhang P F, Wang X L, Ma Y X, Ma P F 2018 Infrared and Laser Engineering 47 0103001Google Scholar
[27] Liu Z, Jin X, Su R, Ma P, Zhou P 2019 Science China Information Sciences 62 41301Google Scholar
[28] Müller M, Klenke A, Steinkopff A, Stark H, Tünnermann A, Limpert J 2018 Opt. Lett. 43 6037Google Scholar
[29] Zhou S, Wise F W, Ouzounov D G 2007 Opt. Lett. 32 871Google Scholar
[30] Seise E, Klenke A, Limpert J, Tünnermann A 2010 Opt. Express 18 27827Google Scholar
[31] Klenke A, Seise E, Limpert J, Tünnermann A 2011 Opt. Express 19 25379Google Scholar
[32] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439Google Scholar
[33] Müeller M, Klenke A, Stark H, Buldt J, Gottschall T, Tünnermann A, Limpert J 2018 Fiber Lasers XV: Technology and Systems San Francisco, California, United States, February, 26, 2018 p1051208
[34] Kienel M, Müller M, Klenke A, Eidam T, Limpert J, Tünnermann A 2015 Opt. Lett. 40 522Google Scholar
[35] Kienel M, Müller M, Klenke A, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3343Google Scholar
[36] Zhou T, Ruppe J, Zhu C, Hu I N, Nees J, Galvanauskas A 2015 Opt. Express 23 7442Google Scholar
[37] Breitkopf S, Wunderlich S, Eidam T, Shestaev E, Holzberger S, Gottschall T, Carstens H, Tünnermann A, Pupeza I, Limpert J 2016 Appl. Phys. B 122 297Google Scholar
[38] Astrauskas I, Kaksis E, Flöry T, Andriukaitis G, Pugžlys A, Baltuška A, Ruppe J, Chen S, Galvanauskas A, Balčiūnas T 2017 Opt. Lett. 42 2201Google Scholar
[39] Yang B, Liu G, Abulikemu A, Wang Y, Wang A, Zhang Z 2020 CLEO: Applications and Technology Washington DC, United States, May 10–15, 2020 pJW2F.28
[40] Fang X H, Hu M L, Liu B W, Chai L, Wang C Y, Zheltikov A M 2010 Opt. Lett. 35 2326Google Scholar
[41] Klenke A, Müller M, Stark H, Stutzki F, Hupel C, Schreiber T, Tünnermann A, Limpert J 2018 Opt. Lett. 43 1519Google Scholar
[42] Aleshire C, Steinkopff A, Jauregui C, Klenke A, Tünnermann A, Limpert J 2020 Opt. Express 28 21035Google Scholar
[43] Heilmann A, Le Dortz J, Daniault L, Fsaifes I, Bellanger S, Bourderionnet J, Larat C, Lallier E, Antier M, Durand E 2018 Opt. Express 26 31542Google Scholar
[44] Brignon A 2013 Coherent Laser Beam Combining (New Jersey: John Wiley & Sons) pp130−132
[45] Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152Google Scholar
[46] Guichard F, Zaouter Y, Hanna M, Mai K L, Morin F, Hönninger C, Mottay E, Georges P 2015 Opt. Lett. 40 89Google Scholar
[47] Kienel M, Klenke A, Eidam T, Hädrich S, Limpert J, Tünnermann A 2014 Opt. Lett. 39 1049Google Scholar
[48] Augst S J, Fan T, Sanchez A 2004 Opt. Lett. 29 474Google Scholar
[49] Hansch T, Couillaud B 1980 Opt. Commun. 35 441Google Scholar
[50] Shay T M 2006 Opt. Express 14 12188Google Scholar
[51] Vorontsov M A, Carhart G W, Ricklin J C 1997 Opt. Lett. 22 907Google Scholar
[52] Tünnermann H, Shirakawa A 2019 Opt. Express 27 24223Google Scholar
[53] Groß P, Boller K J, Klein M E 2005 Phys. Rev. A 71 043824Google Scholar
[54] Ramirez L P, Hanna M, Bouwmans G, El Hamzaoui H, Bouazaoui M, Labat D, Delplace K, Pouysegur J, Guichard F, Rigaud P 2015 Opt. Express 23 5406Google Scholar
-
图 2 掺Yb光纤CPA系统的脉冲能量与平均功率的关系(三角形, 单路; 圆圈, 结合了分脉冲放大(DPA)和空间相干合成(CBC)的CPA系统; 虚线表示脉冲重频)[19]
Fig. 2. Pulse energy as a function of average power for Yb-fiber CPA systems. Triangles, single emitters; circles, CPA systems incorporating divided pulse amplification (DPA) and coherent beam combining (CBC). Dashed lines mark the repetition rate[19].
表 1 不同合成方法的最佳参数与特点
Table 1. The best parameters and characteristics of different combining methods
-
[1] Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 I45Google Scholar
[2] Leemans W, Chou W, Uesaka M 2011 ICFA Beam Dyn. Newsl. 56 10
[3] Abhari R S, Rollinger B, Giovannini A Z, Morris O, Henderson I, Ellwi S S 2012 J. Micro/Nanolithogr. MEMS MOEMS 11 021114Google Scholar
[4] Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar
[5] Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar
[6] Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar
[7] Galvanauskas A, Fermann M, Harter D 1994 Opt. Lett. 19 1201Google Scholar
[8] Jauregui C, Stihler C, Limpert J 2020 Adv. Opt. Photonics 12 429Google Scholar
[9] Zervas M N 2019 Opt. Express 27 19019Google Scholar
[10] Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233Google Scholar
[11] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar
[12] Wan P, Yang L M, Liu J 2013 Opt. Express 21 29854Google Scholar
[13] 程勇, 刘洋, 许立新 2007 红外与激光工程 36 163Google Scholar
Cheng Y, Liu Y, Xu L X 2007 Infrared and Laser Engineering 36 163Google Scholar
[14] 王小林, 周朴, 粟荣涛, 马鹏飞, 陶汝茂, 马阎星, 许晓军, 刘泽金 2017 中国激光 44 0201001Google Scholar
Wang X L, Zhou P, Li R T, Ma P F, Tao R M, Ma Y X, Xu X J, Liu Z J 2017 Chin. J. Laser 44 0201001Google Scholar
[15] Mourou G A, Hulin D, Galvanauskas A 2006 AIP Conf. Proc. Varenna, Italy, September 19−24, 2005 pp152–163
[16] Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303Google Scholar
[17] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66Google Scholar
[18] Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nat. Photonics 7 258Google Scholar
[19] Chang G, Wei Z 2020 Science 23 101101Google Scholar
[20] Stark H, Buldt J, Müller M, Klenke A, Tünnermann A, Limpert J 2019 Opt. Lett. 44 5529Google Scholar
[21] Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar
[22] Hanna M, Guichard F, Zaouter Y, Papadopoulos D N, Druon F, Georges P 2016 J. Phys. B: At. Mol. Opt. Phys 49 062004Google Scholar
[23] Klenke A, Müller M, Stark H, Kienel M, Jauregui C, Tünnermann A, Limpert J 2018 IEEE J. Sel. Top. Quantum Electron. 24 1Google Scholar
[24] 杨康文, 郝强, 曾和平 2018 红外与激光工程 47 103004Google Scholar
Yang K W, Hao Q, Zeng H P 2018 Infrared and Laser Engineering 47 103004Google Scholar
[25] 王郁飞, 李雷, 赵鹭明 2018 红外与激光工程 47 803010Google Scholar
Wang Y F, Li L, Zhao L M 2018 Infrared and Laser Engineering 47 803010Google Scholar
[26] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞 2018 红外与激光工程 47 0103001Google Scholar
Su R T, Zhou P, Zhang P F, Wang X L, Ma Y X, Ma P F 2018 Infrared and Laser Engineering 47 0103001Google Scholar
[27] Liu Z, Jin X, Su R, Ma P, Zhou P 2019 Science China Information Sciences 62 41301Google Scholar
[28] Müller M, Klenke A, Steinkopff A, Stark H, Tünnermann A, Limpert J 2018 Opt. Lett. 43 6037Google Scholar
[29] Zhou S, Wise F W, Ouzounov D G 2007 Opt. Lett. 32 871Google Scholar
[30] Seise E, Klenke A, Limpert J, Tünnermann A 2010 Opt. Express 18 27827Google Scholar
[31] Klenke A, Seise E, Limpert J, Tünnermann A 2011 Opt. Express 19 25379Google Scholar
[32] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439Google Scholar
[33] Müeller M, Klenke A, Stark H, Buldt J, Gottschall T, Tünnermann A, Limpert J 2018 Fiber Lasers XV: Technology and Systems San Francisco, California, United States, February, 26, 2018 p1051208
[34] Kienel M, Müller M, Klenke A, Eidam T, Limpert J, Tünnermann A 2015 Opt. Lett. 40 522Google Scholar
[35] Kienel M, Müller M, Klenke A, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3343Google Scholar
[36] Zhou T, Ruppe J, Zhu C, Hu I N, Nees J, Galvanauskas A 2015 Opt. Express 23 7442Google Scholar
[37] Breitkopf S, Wunderlich S, Eidam T, Shestaev E, Holzberger S, Gottschall T, Carstens H, Tünnermann A, Pupeza I, Limpert J 2016 Appl. Phys. B 122 297Google Scholar
[38] Astrauskas I, Kaksis E, Flöry T, Andriukaitis G, Pugžlys A, Baltuška A, Ruppe J, Chen S, Galvanauskas A, Balčiūnas T 2017 Opt. Lett. 42 2201Google Scholar
[39] Yang B, Liu G, Abulikemu A, Wang Y, Wang A, Zhang Z 2020 CLEO: Applications and Technology Washington DC, United States, May 10–15, 2020 pJW2F.28
[40] Fang X H, Hu M L, Liu B W, Chai L, Wang C Y, Zheltikov A M 2010 Opt. Lett. 35 2326Google Scholar
[41] Klenke A, Müller M, Stark H, Stutzki F, Hupel C, Schreiber T, Tünnermann A, Limpert J 2018 Opt. Lett. 43 1519Google Scholar
[42] Aleshire C, Steinkopff A, Jauregui C, Klenke A, Tünnermann A, Limpert J 2020 Opt. Express 28 21035Google Scholar
[43] Heilmann A, Le Dortz J, Daniault L, Fsaifes I, Bellanger S, Bourderionnet J, Larat C, Lallier E, Antier M, Durand E 2018 Opt. Express 26 31542Google Scholar
[44] Brignon A 2013 Coherent Laser Beam Combining (New Jersey: John Wiley & Sons) pp130−132
[45] Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152Google Scholar
[46] Guichard F, Zaouter Y, Hanna M, Mai K L, Morin F, Hönninger C, Mottay E, Georges P 2015 Opt. Lett. 40 89Google Scholar
[47] Kienel M, Klenke A, Eidam T, Hädrich S, Limpert J, Tünnermann A 2014 Opt. Lett. 39 1049Google Scholar
[48] Augst S J, Fan T, Sanchez A 2004 Opt. Lett. 29 474Google Scholar
[49] Hansch T, Couillaud B 1980 Opt. Commun. 35 441Google Scholar
[50] Shay T M 2006 Opt. Express 14 12188Google Scholar
[51] Vorontsov M A, Carhart G W, Ricklin J C 1997 Opt. Lett. 22 907Google Scholar
[52] Tünnermann H, Shirakawa A 2019 Opt. Express 27 24223Google Scholar
[53] Groß P, Boller K J, Klein M E 2005 Phys. Rev. A 71 043824Google Scholar
[54] Ramirez L P, Hanna M, Bouwmans G, El Hamzaoui H, Bouazaoui M, Labat D, Delplace K, Pouysegur J, Guichard F, Rigaud P 2015 Opt. Express 23 5406Google Scholar
计量
- 文章访问数: 12646
- PDF下载量: 557
- 被引次数: 0