搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双波长飞秒光源的高功率2-5μm中红外超快激光

贾雪琦 刁新财 常国庆

引用本文:
Citation:

基于双波长飞秒光源的高功率2-5μm中红外超快激光

贾雪琦, 刁新财, 常国庆

High-Power Mid-Infrared Ultrafast Sources at 2 - 5μm Based on Dual-Wavelength Source

Jia Xueqi, Diao Xincai, Chang Guoqing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 波长位于2-5μm的中红外超快光源在众多领域具有重要应用价值,如分子检测、空间通信、非线性光学和生物医疗等,但目前实现该波段激光的方法存在局限性。本研究采用差频产生技术,利用高功率双波长超快光纤激光系统,结合3mm周期极化铌酸锂晶体,通过调节泵浦脉冲与信号脉冲之间的延时,优化了输出闲频光的能量。研究成功生成了中心波长为3.06μm的中红外超快激光,平均功率达到3.06W,脉冲能量为90nJ。此外,还实现了波长在2-5μm范围内可调的中红外超快激光,平均功率均超过1W,为当前该波段可实现的最高平均功率水平。
    In the mid-infrared spectral range spanning 2-5μm, ultrafast laser sources are indispensable for a multitude of scientific and industrial applications. These applications leverage the unique properties of mid-infrared light, such as molecular overtone and combination tone absorption for sensitive gas detection, minimal atmospheric attenuation for efficient free-space optical communication, phase-matching extension in nonlinear optical processes for high-order harmonic generation, and non-invasive molecular vibration spectroscopy for biomedical imaging. However, the generation of high-power, tunable mid-infrared lasers has been hindered by the complex spectral phase of supercontinuum sources, the demanding resonator design of optical parametric oscillators, the limited tuning range of rare-earth-doped fiber lasers, and the power limitations of intrapulse difference-frequency generation.
    To address these challenges, this study employs a difference-frequency generation (DFG) scheme utilizing a high-power dual-wavelength ultrafast fiber laser system. The system comprises an Er-doped fiber laser operating at 1556nm and a Yb-doped fiber amplifier extending the spectrum to 1030nm. The 1.03μm pump pulses are amplified to 31.5W with a pulse energy of 0.95μJ and a duration of 260fs, while the 1.55μm signal pulses are amplified to 4.6W, featuring 136nJ energy and 290fs width. A key innovation lies in the spectral broadening of the signal pulses via the SESS (SPM-Enabled Spectral Selection) technique in dispersion-shifted fiber, achieving tunable sidebands from 1.3 to 1.9μm with average powers of 200-400mW.
    The DFG process occurs in a 3mm fan-out PPLN crystal, where the pump and signal pulses are temporally synchronized and focused to 200μm spots. By solving the three-wave coupling equations with the split-step Fourier method, we reveal that the idle light energy exhibits linear, exponential, and saturation regimes with respect to pump and signal energies. Experimental optimization of the pulse delay between the pump and signal beams enhances the idle light energy, achieving a central wavelength of 3.06μm with 3.06W average power and 92nJ pulse energy at 33.3MHz repetition rate. Moreover, by tuning the signal wavelength from 1.3 to 1.9μm and adjusting the PPLN poling period, we generate tunable mid-infrared radiation across 2-5μm, maintaining average powers above 1W throughout the range. At specific wavelengths like 3.28μm, the output power reaches 1.87W, with the power gradually decreasing towards longer wavelengths due to crystal phase-matching limitations.
    The physical significance of these results is profound. The high-power, broadly tunable mid-infrared source enables high-sensitivity gas detection with parts-per-billion precision, real-time combustion diagnostics through simultaneous multi-species monitoring, and table-top high-harmonic generation for attosecond pulse synthesis. Furthermore, the study elucidates the nonlinear energy transfer mechanisms in PPLN crystals, providing design rules for future high-power mid-infrared systems. The experimental demonstration not only pushes the power frontier in this spectral region but also establishes a robust platform for various cutting-edge scientific and industrial applications.
  • [1]

    Zhang Z T, Cheng C F, Sun Y R, Li M, Wang X M. Optics Express. 2020, 28(19): 27600.Zhang Z T, Cheng C F, Sun Y R, Li M, Wang X M 2020 Opt. Express 28 27600

    [2]

    Foltynowicz A, Masłowski P, Fleisher A J, Merer A J, O'Keefe A, Toon G C 2013 Appl. Phys. B 110 163

    [3]

    Zhu Z, Wu G, Li H, Zhang L, Wang Y F 2018 Eng. 4 772

    [4]

    Prasad N S 2005 J. Opt. Fiber Commun. Rep. 2 558

    [5]

    Lin P, Wang T, Ma W, Zhao X X, Chen X 2020 IEEE Photonics Technol. Lett. 32 223

    [6]

    Walsh S M, Karpathakis S F E, McCann A S, Liao A, Leaird D E, Weiner A M 2022 Sci. Rep. 12 18345

    [7]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Murnane M M, Kapteyn H C 2012 Science 336 1287

    [8]

    Rutledge J, Catanese A, Hickstein D D, Dollar F, Kapteyn H C, Murnane M M 2021 J. Opt. Soc. Am. B 38 2252

    [9]

    Vampa G, Vasilyev S, Liu H, Popmintchev T, Murnane M M, Kapteyn H C 2019 Opt. Lett. 44 259

    [10]

    Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177

    [11]

    Aebischer D, Bartusik D, Tabarkiewicz J 2017 Biomed. Pharmacother. 85 434

    [12]

    Seddon A B, Napier B, Lindsay I, Rennick T, Meldrum A, MacGregor A 2018 Analyst 143 5874

    [13]

    Marandi A, Rudy C W, Plotnichenko V G, Kieu K, Boyer A G, Fejer M M 2012 Opt. Express 20 24218

    [14]

    Liu K, Liu J, Shi H, Wang Y, Zhang X, Li H 2014 Opt. Express 22 24384

    [15]

    Woyessa G, Kwarkye K, Dasa M K, Tadesse Y, Debbarma S, Dudley J M, Agger C, Bang O 2021 Opt. Lett. 46 1129

    [16]

    Von Grafenstein L, Bock M, Ueberschaer D, Karpowicz N, Filsinger F, Küpper J 2017 Opt. Lett. 42 3796

    [17]

    Hu M, Wang J, Fan J 2021 Chinese J. Lasers 48 1901001

    [18]

    Smolski V O, Vasilyev S, Schunemann P G, Kuleshov N V, Klimov V V, Kozlov V A 2015 Opt. Lett. 40 2906

    [19]

    Zhou Y, Qin Z, Yuan P, Li H, Wang X, Zhang Y 2021 Opt. Lett. 46 5104

    [20]

    Yu L, Liang J, Huang S, Wang Y, Zhang X, Li H 2022 Opt. Lett. 47 2562

    [21]

    Duval S, Bernier M, Fortin V, Chagnon M, Taillon J, Boudreau J 2015 Optica 2 623

    [22]

    Cui Y, Chen M, Du W, Li H, Zhang Y, Wang X 2021 Opt. Express 29 42924

    [23]

    Wang Q, Zhang J, Kessel A, Zeng X, Li H, Zhang Y 2019 Opt. Lett. 44 2566

    [24]

    Krogen P, Suchowski H, Liang H, Wang Z, Steinleitner P, Nagl N, Kowalczyk M 2017 Nat. Photonics 11 222

    [25]

    Liang H, Krogen P, Wang Z, Steinleitner P, Nagl N, Kowalczyk M 2017 Nat. Commun. 8 141

    [26]

    Elu U, Maidment L, Vamos L, Tani F, Novoa D, Frosz M H, Badikov V, Petrov V, Steinle T, Haberstroh F 2021 Nat. Photonics 15 277

    [27]

    Zhou L, Qin X, Di Y, Xie G, Deng Z, Gu C, Luo D, Li W 2023 Opt. Lett. 48 4673

    [28]

    Zhu F, Hundertmark H, Kolomenskii A A, et al. 2013 Opt. Lett. 38 2360

    [29]

    Liu Y, Zhao J, Wei Z, Zhang X, Li H, Zhang Y 2023 Opt. Lett. 48 1052

    [30]

    Zhou L, Liu Y, Lou H, Di Y, Xie G, Zhu Z, Deng Z, Luo D, Gu C, Chen H, Li W 2020 Opt. Lett. 45 6458

    [31]

    Catanese A, Rutledge J, Silfies M C, et al. 2020 Opt. Lett. 45 1248

    [32]

    Boyd R W 2008 Nonlinear Optics (Third Edition) (San Diego: Academic Press) p132

  • [1] 王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨. 基于DAST晶体的连续太赫兹差频辐射源研究.  , doi: 10.7498/aps.74.20241349
    [2] 梁世杰, 邹家祺, 王文静, 刘迪, 霍燕燕, 宁廷银. Q几何扰动光栅-波导结构中差频产生可调谐太赫兹辐射的数值研究.  , doi: 10.7498/aps.74.20240854
    [3] 王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆. 1 MHz, 273 W掺镱棒状光纤啁啾脉冲放大系统.  , doi: 10.7498/aps.73.20240300
    [4] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展.  , doi: 10.7498/aps.70.20201683
    [5] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳.  , doi: 10.7498/aps.67.20172503
    [6] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器.  , doi: 10.7498/aps.65.244201
    [7] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光.  , doi: 10.7498/aps.65.154205
    [8] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器.  , doi: 10.7498/aps.63.224204
    [9] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量.  , doi: 10.7498/aps.62.094211
    [10] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究.  , doi: 10.7498/aps.62.037805
    [11] 邓舒鹏, 黄文彬, 刘永刚, 刁志辉, 彭增辉, 姚丽双, 宣丽. 基于全息液晶/聚合物光栅的分布反馈式激光器的波长调谐特性研究.  , doi: 10.7498/aps.61.126101
    [12] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器.  , doi: 10.7498/aps.61.214208
    [13] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生.  , doi: 10.7498/aps.59.7892
    [14] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响.  , doi: 10.7498/aps.58.8326
    [15] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究.  , doi: 10.7498/aps.58.4685
    [16] 孙 博, 姚建铨, 王 卓, 王 鹏. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究.  , doi: 10.7498/aps.56.1390
    [17] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器.  , doi: 10.7498/aps.55.4679
    [18] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器.  , doi: 10.7498/aps.55.1171
    [19] 黄显玲, 夏宗炬, 邹英华. Hg蒸汽中通过双光子共振四波差频产生调谐真空紫外辐射.  , doi: 10.7498/aps.39.1385
    [20] 霍崇儒, 黄锡毅. 利用表面波的差频以产生远红外辐射.  , doi: 10.7498/aps.29.1581
计量
  • 文章访问数:  48
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-14

/

返回文章
返回
Baidu
map