搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子气化技术用于固体废物处理的研究进展

孙成伟 沈洁 任雪梅 陈长伦

引用本文:
Citation:

等离子气化技术用于固体废物处理的研究进展

孙成伟, 沈洁, 任雪梅, 陈长伦

Research progress of plasma gasification technology for solid waste treatment

Sun Cheng-Wei, Shen Jie, Ren Xue-Mei, Chen Chang-Lun
PDF
HTML
导出引用
  • 社会经济的快速发展致使固体废物的产量迅速增加, 传统的处理工艺, 如填埋、焚烧和堆肥等方法, 不仅效率低下, 而且存在着二次污染和资源浪费等诸多问题, 因此, 急需探索新的固体废物处理技术. 等离子气化技术因具有高效、环保和能源转化率高等特点而被应用于固体废物的处理. 本文介绍了等离子气化技术处理固体废物的背景与意义, 综述了等离子气化技术在不同固体废物处理中的应用, 就国内外等离子气化技术水平与研究进展进行了详细的阐述, 并对目前等离子气化固体废物应用中存在的问题进行了着重分析. 综合多方面因素指出等离子气化技术是固体废物资源无害化处理的有效方式.
    The rapid development of social economy leads the output of solid waste to increase rapidly. The traditional treatment methods, such as landfilling, incineration and composting, are not only inefficient, but also have many limitations, such as secondary pollution and waste of resources. Therefore, it is urgent to explore new solid waste treatment technology. Due to its high efficiency, environmental protection and high energy conversion, the plasma gasification technology has been applied to the harmless treatment of solid waste. This article introduces the background and significance of plasma gasification technology in solid waste treatment, and summarizes the application of plasma gasification technology to different solid waste treatments, the technical level and research progress of plasma gasification of solid waste in the world are described in detail, and the existing problems in the current application of plasma gasification of solid waste are emphatically analyzed. It is pointed out that plasma gasification technology is an effective way to treat solid waste.
      通信作者: 陈长伦, clchen@ipp.ac.cn
    • 基金项目: 安徽省自然科学基金(批准号: 2008085MB46, 1808085MA13)和国家自然科学基金(批准号: 51877208) 资助的课题
      Corresponding author: Chen Chang-Lun, clchen@ipp.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. 2008085MB46, 1808085MA13) and the National Natural Science Foundation of China (Grant No. 51877208)
    [1]

    Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild M Z, Christensen T H 2014 Waste Manage. 34 573Google Scholar

    [2]

    Liu Y J, Liu Y T, Li H, Fu X D, Guo H W, Meng R H, Lu W J, Zhao M, Wang H T 2016 Environ. Int. 97 15Google Scholar

    [3]

    Sultan M, Waheed S, Ali U, Sweetman A J, Jones K C, Malik R N 2019 Ecotoxicol. Environ. Saf. 170 195Google Scholar

    [4]

    Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D 2018 Environ. Sci. Eur. 30 13Google Scholar

    [5]

    Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H 2017 Waste Manage. 60 397Google Scholar

    [6]

    Sauve G, Van Acker K 2020 J. Environ. Manage. 261 110216Google Scholar

    [7]

    Lin Z Z, Wang Z, Hu Y F, Liu Y L, Xu J 2017 Environ. Eng. Sci. 34 607Google Scholar

    [8]

    Zhang J J, Zhang S G, Liu B 2020 J. Cleaner Prod. 250 119507Google Scholar

    [9]

    Chaturvedi S, Yadav B P, Siddiqui N A, Chaturvedi S K 2020 J. Oceanic Eng. Sci. 5 136Google Scholar

    [10]

    Lim S L, Lee L H, Wu T Y 2016 J. Cleaner Prod. 111 262Google Scholar

    [11]

    Yao P 2017 Arabian J. Chem. 10 S2567Google Scholar

    [12]

    Kumar A, Samadder S R 2017 Waste Manage. 69 407Google Scholar

    [13]

    Munir M T, Mardon I, Al-Zuhair S, Shawabkeh A, Saqib N U 2019 Renewable Sustainable Energy Rev. 116 109461Google Scholar

    [14]

    Fang S W, Gu W L, Chen L, Yu Z S, Dai M Q, Lin Y, Liao Y F, Ma X Q 2018 Bioresour. Technol. 258 5Google Scholar

    [15]

    Inglezakis V J, Amzebek A, Kuspangaliyeva B, Sarbassov Y, Balbayeva G, Yerkinova A, Poulopoulos S G 2018 Desalin. Water Treat. 112 218Google Scholar

    [16]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [17]

    Ghasali E, Alizadeh M, Niazmand M, Ebadzadeh T 2017 J. Alloys Compd. 697 200Google Scholar

    [18]

    Shi B L, Dai Y F, Xie X H, Li S Y, Zhou L 2016 Plasma Chem. Plasma Process. 36 891Google Scholar

    [19]

    Niu H Z, Chen Y F, Zhang D L, Zhang Y S, Lu J W, Zhang W, Zhang P X 2016 Mater. Des. 89 823Google Scholar

    [20]

    Miller K K, Gottfried J L, Walck S D, Pantoya M L, Wu C C 2019 Combust. Flame 206 211Google Scholar

    [21]

    Messerle V E, Mosse A L, Ustimenko A B 2018 Waste Manage. 79 791Google Scholar

    [22]

    Yayalık I, Koyun A, Akgün M 2020 Plasma Chem. Plasma Process. 40 1401Google Scholar

    [23]

    Pujara Y, Pathak P, Sharma A, Govani J 2019 J. Environ. Manage. 248 109238Google Scholar

    [24]

    Meena M D, Yadav R K, Narjary B, Yadav G, Jat H S, Sheoran P, Meena M K, Antil R S, Meena B L, Singh H V, Meena V S, Rai P K, Ghosh A, Moharana P C 2019 Waste Manage. 84 38Google Scholar

    [25]

    Chen Y C 2018 Waste Manage. 79 828Google Scholar

    [26]

    Peterson R A, Buck E C, Chun J, Daniel R C, Herting D L, Ilton E S, Lumetta G J, Clark S B 2018 Environ. Sci. Technol. 52 381Google Scholar

    [27]

    Ghasemi L, Yousefzadeh S, Rastkari N, Naddafi K, Far N S, Nabizadeh R 2018 J. Environ. Health Sci. Eng. 16 171Google Scholar

    [28]

    Ahmed M J K, Ahmaruzzaman M 2016 J. Water Process Eng. 10 39Google Scholar

    [29]

    Gundupalli S P, Hait S, Thakur A 2017 Waste Manage. 60 56Google Scholar

    [30]

    Agon N, Hrabovský M, Chumak O, Hlína M, Kopecký V, Masláni A, Bosmans A, Helsen L, Skoblja S, Van Oost G, Vierendeels J 2016 Waste Manage. 47 246Google Scholar

    [31]

    Hrabovsky M, Kopeckykopecky V, Sember V, Kavka T, Chumak O, Konrad M 2006 IEEE Trans. Plasma Sci. 34 1566Google Scholar

    [32]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2015 Fuel Process. Technol. 137 259Google Scholar

    [33]

    Shie J, Chen L X, Lin K L, Chang C Y 2014 Energy 66 82Google Scholar

    [34]

    Prado E S P, Miranda F S, Petraconi G, Potiens Jr A J 2020 Radiat. Phys. Chem. 168 108625Google Scholar

    [35]

    Trnovcevic J, Schneider F, Scherer U W 2017 Radiat. Eff. Defects Solids 172 23Google Scholar

    [36]

    Rajan R, Robin D T, Vandanarani M 2019 J. Ayurveda Integr. Med. 10 214Google Scholar

    [37]

    Messerle V E, Mosse A L, Ustimenko A B 2016 IEEE Trans. Plasma Sci. 44 3017Google Scholar

    [38]

    Pei S L, Chen T L, Pan S Y, Yang Y L, Sun Z H, Li Y J 2020 J. Hazard. Mater. 398 122959Google Scholar

    [39]

    Ma W C, Fang Y H, Chen D M, Chen G Y, Xu Y X, Sheng H Z, Zhou Z H 2017 Fuel 210 145Google Scholar

    [40]

    Zhao P, Ni G H, Jiang Y M, Chen L W, Chen M Z, Meng Y D 2010 J. Hazard. Mater. 181 580Google Scholar

    [41]

    Seftejani M N, Schenk J 2018 Metals 8 1051Google Scholar

    [42]

    Yugeswaran S, Ananthapadmanabhan P V, Lusvarghi L 2015 Ceram. Int. 41 265Google Scholar

    [43]

    Yugeswaran S, Ananthapadmanabhan P V, Thiyagarajan T K, Ramachandran K 2015 Ceram. Int. 41 9585Google Scholar

    [44]

    Peng G L, Deng S B, Liu F L, Qi C D, Tao L Y, Li T, Yu G 2020 J. Cleaner Prod. 262 121416Google Scholar

    [45]

    Chen H X, Yuan H H, Mao L Q, Hashmi M Z, Xu F N, Tang X J 2020 Chemosphere 240 124885Google Scholar

    [46]

    Orescanin V, Mikelic I L, Kollar R, Mikulic N, Medunic G 2012 Arh. Hig. Rada Toksikol. 63 337Google Scholar

    [47]

    Vieira Cubas A L, Machado M D M, Machado M d M, Gross F, Magnago R F, Siegel Moecke E H, de Souza I G 2014 Environ. Sci. Technol. 48 2853Google Scholar

    [48]

    Fabry F, Rehmet C, Rohani V, Fulcheri L 2013 Waste Biomass Valorization 4 421Google Scholar

    [49]

    Sanito R C, You S J, Chang T J, Wang Y F 2020 J. Environ. Manage. 270 110910Google Scholar

    [50]

    杨德宇, 俞建荣 2014 新技术新工艺 2 106Google Scholar

    Yang D Y, Yu J R 2014 New Technology & New Process 2 106Google Scholar

    [51]

    Ramos A, Berzosa J, Espí J, Clarens F, Rouboa A 2020 Energy Convers. Manage. 209 112508Google Scholar

    [52]

    任一峰 2011 发电设备 25 370Google Scholar

    Ren Y F 2011 Power Equipment 25 370Google Scholar

    [53]

    Ruj B, Ghosh S 2014 Fuel Process. Technol. 126 298Google Scholar

    [54]

    Choi K, Sheng J W, Lee M C, Song M J 2000 Waste Manage. 20 575Google Scholar

    [55]

    Jeong J, Baik M H, Kang M J, Ahn H J, Hwang D S, Hong D S, Jeong Y H, Kim K 2016 Nucl. Eng. Technol. 48 1368Google Scholar

    [56]

    Byun Y, Namkung W, Cho M, Chung J W, Kim Y S, Lee J H, Lee C R, Hwang S M 2010 Environ. Sci. Technol. 44 6680Google Scholar

    [57]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2014 Fuel Process. Technol. 128 146Google Scholar

    [58]

    Taylor R, Ray R, Chapman C 2013 Fuel 106 401Google Scholar

    [59]

    Rani D A, Gomez E, Boccaccini A R, Hao L, Deegan D, Cheeseman C R 2008 Waste Manage. 28 1254Google Scholar

    [60]

    Rutberg P G, Kuznetsov V A, Serba E O, Popov S D, Surov A V, Nakonechny G V, Nikonov A V 2013 Appl. Energy 108 505Google Scholar

    [61]

    Surov A V, Popov S D, Popov V E, Subbotin D I, Serba E O, Spodobin V A, Nakonechny G V, Pavlov A V 2017 Fuel 203 1007Google Scholar

    [62]

    Rutberg P G, Bratsev A N, Kuznetsov V A, Popov V E, Ufimtsev A A, Shtengel S V 2011 Biomass Bioenergy 35 495Google Scholar

    [63]

    Fulcheri L, Fabry F, Takali S, Rohani V 2015 Plasma Chem. Plasma Process. 35 565Google Scholar

    [64]

    Zhang Q L, Dor L R, Fenigshtein D, Yang W H, Blasiak W 2012 Appl. Energy 90 106Google Scholar

    [65]

    Zhang Q L, Dor L R, Zhang L, Yang W H, Blasiak W 2012 Appl. Energy 98 219Google Scholar

    [66]

    Zhang Q L, Wu Y S, Dor L R, Yang W H, Blasiak W 2013 Appl. Energy 112 405Google Scholar

    [67]

    王希, 张春飞, 王晓亮, 胡蕴成 2012 现代化工 32 20Google Scholar

    Wang X, Zhang C F, Wang X L, Hu Y C 2012 Modern Chemical Industry 32 20Google Scholar

    [68]

    Fourcault A, Marias F, Michon U 2010 Biomass Bioenergy 34 1363Google Scholar

    [69]

    Jayasankar K, Ray P K, Chaubey A K, Padhi A, Satapathy B K, Mukherjee P S 2012 Int. J. Miner. Metall. Mater. 19 679Google Scholar

    [70]

    Tang B S, Lin J, Qian S, Wang J D, Zhang S 2014 Mater. Lett. 128 68Google Scholar

    [71]

    Zhou H, Meng A H, Long Y Q, Li Q H, Zhang Y G 2014 Renewable Sustainable Energy Rev. 36 107Google Scholar

    [72]

    Zhao X G, Jiang G W, Li A, Wang L 2016 Waste Manage. 48 604Google Scholar

    [73]

    Chu J P, Hwang I, Tzeng C C, Kuo Y Y, Yu Y J 1998 J. Hazard. Mater. 58 179Google Scholar

    [74]

    Yang S F, Chiu W T, Wang T M, Chen C T, Tzeng C C 2014 Waste Manage. 34 1079Google Scholar

    [75]

    黄付平, 黄智宁, 谢启军, 谢建跃, 何少媚, 覃岳隆, 覃霞 2019 环境工程 37 199Google Scholar

    Huang F P, Huang Z N, Xie Q J, Xie J Y, He S M, Tan Y L, Tan X 2019 Environmental Engineering 37 199Google Scholar

    [76]

    Tang L, Huang H 2004 J. Anal. Appl. Pyrolysis 72 35Google Scholar

    [77]

    Zhao Z L, Huang H T, Wu C Z, Li H B, Chen Y 2001 Eng. Life Sci. 1 197Google Scholar

    [78]

    Huang H, Tang L, Wu C Z 2003 Environ. Sci. Technol. 37 4463Google Scholar

    [79]

    程昌明, 童洪辉, 兰伟, 张劲松, 耿少飞, 朱海龙 2013 高电压技术 39 1584Google Scholar

    Cheng M C, Tong H H, Lan W, Zhang J S, Geng S F, Zhu H L 2013 High Voltage Engineering 39 1584Google Scholar

    [80]

    Yan B H, Cheng Y, Li T Y, Cheng Y 2017 Energy 121 10Google Scholar

    [81]

    Ma S, Zhao Y C, Yang J, Zhang S B, Zhang J Y, Zheng C G 2017 Renewable Sustainable Energy Rev. 67 791Google Scholar

    [82]

    杜长明, 蔡晓伟, 余振棠, 宋春莲, 俞哲 2019 高压电技术 45 2999Google Scholar

    Du C M, Cai X W, Yu Z T, Song C L, Yu Z 2019 High Voltage Engineering 45 2999Google Scholar

    [83]

    Danthurebandara M, Van Passel S, Vanderreydt I, Van Acker K 2015 Waste Manage. 45 458Google Scholar

    [84]

    Li J, Liu K, Yan S J, Li Y J, Han D 2016 Waste Manage. 58 260Google Scholar

    [85]

    Favas J, Monteiro E, Rouboa A 2017 Int. J. Hydrogen Energy 42 10997Google Scholar

    [86]

    Perna A, Minutillo M, Lavadera A L, Jannelli E 2018 Waste Manage. 73 424Google Scholar

  • 图 1  反应器示意图(1, 料斗; 2, 反应器; 3, 泥渣收集桶; 4, 淬火室; 5, 加力燃烧室)[30]

    Fig. 1.  Schematic diagram of reactor. 1, material hopper; 2, reactor; 3, slag collection bucket; 4, quenching chamber; 5, afterburner [30].

    图 2  (a)等离子气化医疗废物装置示意图[21]; (b)等离子体气化反应器示意图[21]

    Fig. 2.  (a) Schematic diagram of plasma gasification medical waste equipment[21]; (b) schematic diagram of the plasma gasification reactor[21].

    图 3  (a)低功率转移弧等离子炬[42]; (b)非转移弧与(c)转移弧等离子炬反应器[47]

    Fig. 3.  (a) Low power transfer are plasma torch[42]; (b) non-transfer arc and (c) transfer arc plasma reactor[47].

    图 4  等离子气化系统的示意图[51]

    Fig. 4.  Schematic of the plasma gasification system[51].

    图 5  热等离子体工艺处理城市废物示意图[56]

    Fig. 5.  Schematic diagram of thermal plasma process for municipal solid waste treatment[56].

    图 6  集成炉示意图[56]

    Fig. 6.  Schematic of the integrated furnace[56].

    图 7  APP公司等离子气化工艺示意图[57]

    Fig. 7.  Schematic diagram of APP company plasma gasification process[57].

    图 8  等离子玻璃化飞灰的示意图[59]

    Fig. 8.  Schematic diagram of plasma vitrification fly ash[59].

    图 9  三相交流等离子体炬示意图[63]

    Fig. 9.  Scheme of the three-phase AC plasma torch[63].

    图 10  (a) PGM设备示意图; (b) PGM气化炉示意图[64]

    Fig. 10.  (a) Schematic diagram of PGM equipment; (b) schematics of PGM gasifier[64].

    图 11  气化过程示意图[68]

    Fig. 11.  Schematic diagram of gasification process[68].

    图 12  直流等离子体反应器示意图[69]

    Fig. 12.  Schematic diagram of direct current plasma reactor[69]

    图 13  玻璃化炉的示意图[40]

    Fig. 13.  Schematic diagram of vitrification furnace[40].

    图 14  等离子体玻璃化系统的示意图[73]

    Fig. 14.  Schematic of the plasma vitrification system[73].

    图 15  等离子体焚烧工艺流程图[79]

    Fig. 15.  Process flow diagram of plasma incineration[79].

    Baidu
  • [1]

    Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild M Z, Christensen T H 2014 Waste Manage. 34 573Google Scholar

    [2]

    Liu Y J, Liu Y T, Li H, Fu X D, Guo H W, Meng R H, Lu W J, Zhao M, Wang H T 2016 Environ. Int. 97 15Google Scholar

    [3]

    Sultan M, Waheed S, Ali U, Sweetman A J, Jones K C, Malik R N 2019 Ecotoxicol. Environ. Saf. 170 195Google Scholar

    [4]

    Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D 2018 Environ. Sci. Eur. 30 13Google Scholar

    [5]

    Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H 2017 Waste Manage. 60 397Google Scholar

    [6]

    Sauve G, Van Acker K 2020 J. Environ. Manage. 261 110216Google Scholar

    [7]

    Lin Z Z, Wang Z, Hu Y F, Liu Y L, Xu J 2017 Environ. Eng. Sci. 34 607Google Scholar

    [8]

    Zhang J J, Zhang S G, Liu B 2020 J. Cleaner Prod. 250 119507Google Scholar

    [9]

    Chaturvedi S, Yadav B P, Siddiqui N A, Chaturvedi S K 2020 J. Oceanic Eng. Sci. 5 136Google Scholar

    [10]

    Lim S L, Lee L H, Wu T Y 2016 J. Cleaner Prod. 111 262Google Scholar

    [11]

    Yao P 2017 Arabian J. Chem. 10 S2567Google Scholar

    [12]

    Kumar A, Samadder S R 2017 Waste Manage. 69 407Google Scholar

    [13]

    Munir M T, Mardon I, Al-Zuhair S, Shawabkeh A, Saqib N U 2019 Renewable Sustainable Energy Rev. 116 109461Google Scholar

    [14]

    Fang S W, Gu W L, Chen L, Yu Z S, Dai M Q, Lin Y, Liao Y F, Ma X Q 2018 Bioresour. Technol. 258 5Google Scholar

    [15]

    Inglezakis V J, Amzebek A, Kuspangaliyeva B, Sarbassov Y, Balbayeva G, Yerkinova A, Poulopoulos S G 2018 Desalin. Water Treat. 112 218Google Scholar

    [16]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [17]

    Ghasali E, Alizadeh M, Niazmand M, Ebadzadeh T 2017 J. Alloys Compd. 697 200Google Scholar

    [18]

    Shi B L, Dai Y F, Xie X H, Li S Y, Zhou L 2016 Plasma Chem. Plasma Process. 36 891Google Scholar

    [19]

    Niu H Z, Chen Y F, Zhang D L, Zhang Y S, Lu J W, Zhang W, Zhang P X 2016 Mater. Des. 89 823Google Scholar

    [20]

    Miller K K, Gottfried J L, Walck S D, Pantoya M L, Wu C C 2019 Combust. Flame 206 211Google Scholar

    [21]

    Messerle V E, Mosse A L, Ustimenko A B 2018 Waste Manage. 79 791Google Scholar

    [22]

    Yayalık I, Koyun A, Akgün M 2020 Plasma Chem. Plasma Process. 40 1401Google Scholar

    [23]

    Pujara Y, Pathak P, Sharma A, Govani J 2019 J. Environ. Manage. 248 109238Google Scholar

    [24]

    Meena M D, Yadav R K, Narjary B, Yadav G, Jat H S, Sheoran P, Meena M K, Antil R S, Meena B L, Singh H V, Meena V S, Rai P K, Ghosh A, Moharana P C 2019 Waste Manage. 84 38Google Scholar

    [25]

    Chen Y C 2018 Waste Manage. 79 828Google Scholar

    [26]

    Peterson R A, Buck E C, Chun J, Daniel R C, Herting D L, Ilton E S, Lumetta G J, Clark S B 2018 Environ. Sci. Technol. 52 381Google Scholar

    [27]

    Ghasemi L, Yousefzadeh S, Rastkari N, Naddafi K, Far N S, Nabizadeh R 2018 J. Environ. Health Sci. Eng. 16 171Google Scholar

    [28]

    Ahmed M J K, Ahmaruzzaman M 2016 J. Water Process Eng. 10 39Google Scholar

    [29]

    Gundupalli S P, Hait S, Thakur A 2017 Waste Manage. 60 56Google Scholar

    [30]

    Agon N, Hrabovský M, Chumak O, Hlína M, Kopecký V, Masláni A, Bosmans A, Helsen L, Skoblja S, Van Oost G, Vierendeels J 2016 Waste Manage. 47 246Google Scholar

    [31]

    Hrabovsky M, Kopeckykopecky V, Sember V, Kavka T, Chumak O, Konrad M 2006 IEEE Trans. Plasma Sci. 34 1566Google Scholar

    [32]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2015 Fuel Process. Technol. 137 259Google Scholar

    [33]

    Shie J, Chen L X, Lin K L, Chang C Y 2014 Energy 66 82Google Scholar

    [34]

    Prado E S P, Miranda F S, Petraconi G, Potiens Jr A J 2020 Radiat. Phys. Chem. 168 108625Google Scholar

    [35]

    Trnovcevic J, Schneider F, Scherer U W 2017 Radiat. Eff. Defects Solids 172 23Google Scholar

    [36]

    Rajan R, Robin D T, Vandanarani M 2019 J. Ayurveda Integr. Med. 10 214Google Scholar

    [37]

    Messerle V E, Mosse A L, Ustimenko A B 2016 IEEE Trans. Plasma Sci. 44 3017Google Scholar

    [38]

    Pei S L, Chen T L, Pan S Y, Yang Y L, Sun Z H, Li Y J 2020 J. Hazard. Mater. 398 122959Google Scholar

    [39]

    Ma W C, Fang Y H, Chen D M, Chen G Y, Xu Y X, Sheng H Z, Zhou Z H 2017 Fuel 210 145Google Scholar

    [40]

    Zhao P, Ni G H, Jiang Y M, Chen L W, Chen M Z, Meng Y D 2010 J. Hazard. Mater. 181 580Google Scholar

    [41]

    Seftejani M N, Schenk J 2018 Metals 8 1051Google Scholar

    [42]

    Yugeswaran S, Ananthapadmanabhan P V, Lusvarghi L 2015 Ceram. Int. 41 265Google Scholar

    [43]

    Yugeswaran S, Ananthapadmanabhan P V, Thiyagarajan T K, Ramachandran K 2015 Ceram. Int. 41 9585Google Scholar

    [44]

    Peng G L, Deng S B, Liu F L, Qi C D, Tao L Y, Li T, Yu G 2020 J. Cleaner Prod. 262 121416Google Scholar

    [45]

    Chen H X, Yuan H H, Mao L Q, Hashmi M Z, Xu F N, Tang X J 2020 Chemosphere 240 124885Google Scholar

    [46]

    Orescanin V, Mikelic I L, Kollar R, Mikulic N, Medunic G 2012 Arh. Hig. Rada Toksikol. 63 337Google Scholar

    [47]

    Vieira Cubas A L, Machado M D M, Machado M d M, Gross F, Magnago R F, Siegel Moecke E H, de Souza I G 2014 Environ. Sci. Technol. 48 2853Google Scholar

    [48]

    Fabry F, Rehmet C, Rohani V, Fulcheri L 2013 Waste Biomass Valorization 4 421Google Scholar

    [49]

    Sanito R C, You S J, Chang T J, Wang Y F 2020 J. Environ. Manage. 270 110910Google Scholar

    [50]

    杨德宇, 俞建荣 2014 新技术新工艺 2 106Google Scholar

    Yang D Y, Yu J R 2014 New Technology & New Process 2 106Google Scholar

    [51]

    Ramos A, Berzosa J, Espí J, Clarens F, Rouboa A 2020 Energy Convers. Manage. 209 112508Google Scholar

    [52]

    任一峰 2011 发电设备 25 370Google Scholar

    Ren Y F 2011 Power Equipment 25 370Google Scholar

    [53]

    Ruj B, Ghosh S 2014 Fuel Process. Technol. 126 298Google Scholar

    [54]

    Choi K, Sheng J W, Lee M C, Song M J 2000 Waste Manage. 20 575Google Scholar

    [55]

    Jeong J, Baik M H, Kang M J, Ahn H J, Hwang D S, Hong D S, Jeong Y H, Kim K 2016 Nucl. Eng. Technol. 48 1368Google Scholar

    [56]

    Byun Y, Namkung W, Cho M, Chung J W, Kim Y S, Lee J H, Lee C R, Hwang S M 2010 Environ. Sci. Technol. 44 6680Google Scholar

    [57]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2014 Fuel Process. Technol. 128 146Google Scholar

    [58]

    Taylor R, Ray R, Chapman C 2013 Fuel 106 401Google Scholar

    [59]

    Rani D A, Gomez E, Boccaccini A R, Hao L, Deegan D, Cheeseman C R 2008 Waste Manage. 28 1254Google Scholar

    [60]

    Rutberg P G, Kuznetsov V A, Serba E O, Popov S D, Surov A V, Nakonechny G V, Nikonov A V 2013 Appl. Energy 108 505Google Scholar

    [61]

    Surov A V, Popov S D, Popov V E, Subbotin D I, Serba E O, Spodobin V A, Nakonechny G V, Pavlov A V 2017 Fuel 203 1007Google Scholar

    [62]

    Rutberg P G, Bratsev A N, Kuznetsov V A, Popov V E, Ufimtsev A A, Shtengel S V 2011 Biomass Bioenergy 35 495Google Scholar

    [63]

    Fulcheri L, Fabry F, Takali S, Rohani V 2015 Plasma Chem. Plasma Process. 35 565Google Scholar

    [64]

    Zhang Q L, Dor L R, Fenigshtein D, Yang W H, Blasiak W 2012 Appl. Energy 90 106Google Scholar

    [65]

    Zhang Q L, Dor L R, Zhang L, Yang W H, Blasiak W 2012 Appl. Energy 98 219Google Scholar

    [66]

    Zhang Q L, Wu Y S, Dor L R, Yang W H, Blasiak W 2013 Appl. Energy 112 405Google Scholar

    [67]

    王希, 张春飞, 王晓亮, 胡蕴成 2012 现代化工 32 20Google Scholar

    Wang X, Zhang C F, Wang X L, Hu Y C 2012 Modern Chemical Industry 32 20Google Scholar

    [68]

    Fourcault A, Marias F, Michon U 2010 Biomass Bioenergy 34 1363Google Scholar

    [69]

    Jayasankar K, Ray P K, Chaubey A K, Padhi A, Satapathy B K, Mukherjee P S 2012 Int. J. Miner. Metall. Mater. 19 679Google Scholar

    [70]

    Tang B S, Lin J, Qian S, Wang J D, Zhang S 2014 Mater. Lett. 128 68Google Scholar

    [71]

    Zhou H, Meng A H, Long Y Q, Li Q H, Zhang Y G 2014 Renewable Sustainable Energy Rev. 36 107Google Scholar

    [72]

    Zhao X G, Jiang G W, Li A, Wang L 2016 Waste Manage. 48 604Google Scholar

    [73]

    Chu J P, Hwang I, Tzeng C C, Kuo Y Y, Yu Y J 1998 J. Hazard. Mater. 58 179Google Scholar

    [74]

    Yang S F, Chiu W T, Wang T M, Chen C T, Tzeng C C 2014 Waste Manage. 34 1079Google Scholar

    [75]

    黄付平, 黄智宁, 谢启军, 谢建跃, 何少媚, 覃岳隆, 覃霞 2019 环境工程 37 199Google Scholar

    Huang F P, Huang Z N, Xie Q J, Xie J Y, He S M, Tan Y L, Tan X 2019 Environmental Engineering 37 199Google Scholar

    [76]

    Tang L, Huang H 2004 J. Anal. Appl. Pyrolysis 72 35Google Scholar

    [77]

    Zhao Z L, Huang H T, Wu C Z, Li H B, Chen Y 2001 Eng. Life Sci. 1 197Google Scholar

    [78]

    Huang H, Tang L, Wu C Z 2003 Environ. Sci. Technol. 37 4463Google Scholar

    [79]

    程昌明, 童洪辉, 兰伟, 张劲松, 耿少飞, 朱海龙 2013 高电压技术 39 1584Google Scholar

    Cheng M C, Tong H H, Lan W, Zhang J S, Geng S F, Zhu H L 2013 High Voltage Engineering 39 1584Google Scholar

    [80]

    Yan B H, Cheng Y, Li T Y, Cheng Y 2017 Energy 121 10Google Scholar

    [81]

    Ma S, Zhao Y C, Yang J, Zhang S B, Zhang J Y, Zheng C G 2017 Renewable Sustainable Energy Rev. 67 791Google Scholar

    [82]

    杜长明, 蔡晓伟, 余振棠, 宋春莲, 俞哲 2019 高压电技术 45 2999Google Scholar

    Du C M, Cai X W, Yu Z T, Song C L, Yu Z 2019 High Voltage Engineering 45 2999Google Scholar

    [83]

    Danthurebandara M, Van Passel S, Vanderreydt I, Van Acker K 2015 Waste Manage. 45 458Google Scholar

    [84]

    Li J, Liu K, Yan S J, Li Y J, Han D 2016 Waste Manage. 58 260Google Scholar

    [85]

    Favas J, Monteiro E, Rouboa A 2017 Int. J. Hydrogen Energy 42 10997Google Scholar

    [86]

    Perna A, Minutillo M, Lavadera A L, Jannelli E 2018 Waste Manage. 73 424Google Scholar

  • [1] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展.  , 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [2] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源.  , 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [3] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用.  , 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [4] 汪洋, 刘煜, 吴成印. 固体高次谐波产生、调控及应用.  , 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [5] 陈珊珊, 刘幸, 刘之光, 李家方. 基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用.  , 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [6] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究.  , 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用.  , 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [8] 张一川, 杨宽, 李唤, 朱晓东. ICP微等离子体射流在快速成形制造中的应用.  , 2016, 65(14): 145201. doi: 10.7498/aps.65.145201
    [9] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究.  , 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [10] 周磊, 李晓亚, 祝文军, 王加祥, 唐昌建. 激光辐照固体靶产生等离子体反冲研究.  , 2016, 65(8): 085201. doi: 10.7498/aps.65.085201
    [11] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究.  , 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [12] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境非偏置固体表面带电研究.  , 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [13] 荆庆丽, 杜春光, 高健存. 表面等离子共振现象的新应用——微弱磁场的测量.  , 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [14] 曹柱荣, 张海鹰, 董建军, 袁铮, 缪文勇, 刘慎业, 江少恩, 丁永坤. 高动态范围激光等离子体诊断系统及其在惯性约束聚变实验中的应用.  , 2011, 60(4): 045212. doi: 10.7498/aps.60.045212
    [15] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用.  , 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [16] 李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用.  , 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [17] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用.  , 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [18] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用.  , 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [19] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用.  , 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] 杨晓华, 陈扬琴, 蔡佩佩, 王荣军, 卢晶晶. 速度调制光谱技术在等离子体诊断中的应用.  , 2000, 49(3): 421-425. doi: 10.7498/aps.49.421
计量
  • 文章访问数:  12959
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2021-02-22
  • 上网日期:  2021-04-19
  • 刊出日期:  2021-05-05

/

返回文章
返回
Baidu
map