搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光辐照固体靶产生等离子体反冲研究

周磊 李晓亚 祝文军 王加祥 唐昌建

引用本文:
Citation:

激光辐照固体靶产生等离子体反冲研究

周磊, 李晓亚, 祝文军, 王加祥, 唐昌建

Plasma recoil induced by laser radiated solid target

Zhou Lei, Li Xiao-Ya, Zhu Wen-Jun, Wang Jia-Xiang, Tang Chang-Jian
PDF
导出引用
  • 提出一种通过诊断等离子体反冲动量来计算激光加载产生冲击压强的方法. 当强激光辐照固体靶表面时, 所产生的高速喷射的等离子体对靶具有反冲作用, 通过诊断等离子体反冲动量的变化可以计算激光辐照固体靶产生的冲击压强变化. 本文利用辐射流体力学软件研究了这种诊断方法, 模拟采用的激光功率密度为51012-51013 W/cm2, 激光脉宽选取纳秒量级. 模拟结果表明该方法是有效且可行的.
    Based on the theory of conservation of momentum, a theoretical method of calculating the shock pressure induced by laser loading via diagnosing plasma recoil momentum is presented. When a high-power laser irradiates a solid target surface, the plasma jet with high velocity induced by laser has a recoil effect on the target. Then the plasma recoil momentum induced by laser irradiating solid target can be calculated by the distribution of electron plasma. At the same time, the subcritical electron plasma density could be measured by interferometry and the supercritical plasma density could be fitted into exponential function form. So the variation of shock wave pressure could be calculated via diagnosing plasma recoil momentum. This method does not consider the relationship between D and u, nor uses the window material nor needs the steady shock propagation. It is a useful method of studying the material property under high strain rate and isentropic compression. Numerical simulation results using one-dimensional radiation hydro code called MULTI for laser intensities ranging from 51012 W/cm2 to 51013 W/cm2 are presented. The electron temperature is nearly equal to the ion temperature for the laser pulse duration 2 ns but much greater than the ion temperature for = 1 ns. This means for that ns pulse duration, the difference between electron and ion temperature could be ignored in general. And in order to fit the shock pressure value more exactly, the density of ablation surface nabl = n0exp(-1) is used in the simulations. The simulation results indicate that the value of calculating shock pressure obtained via diagnosing plasma recoil momentum is similar to the shock pressure calculated by MULTI simulation for ns pulse duration. And the value of calculating shock pressure is also similar to the experimental value for pulse duration = 5 ns. From the simulation results, it is obvious that the method of calculating the shock pressure via diagnosing plasma recoil momentum is effective and feasible.
      通信作者: 李晓亚, xiaoyali111@caep.cn
    • 基金项目: 冲击波物理与爆轰物理重点实验室专项(批准号: 077110, 77160) 资助的课题.
      Corresponding author: Li Xiao-Ya, xiaoyali111@caep.cn
    • Funds: Project supported by the Science and Technology Foundation of State Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 077110, 77160).
    [1]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [2]

    Yu Y Y, Xi F, Dai C D, Cai L C, Tan Y, Li X M, Wu Q, Tan H 2015 Chin. Phys. B 24 066201

    [3]

    Glenzer S H, MacGowan B J, Michel P, et al. 2010 Science 327 1228

    [4]

    Cohen T, Herren K A, Thompson M S, Lin J, Pakhomov A V 2005 AIP Conf. Proc. 766 406

    [5]

    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propulsion Power 26 609

    [6]

    Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203

    [7]

    Celliers P M, Collins G W, Hicks D G, Eggert J H 2005 J. Appl. Phys. 98 113529

    [8]

    Veeser L R, Solem J C 1978 Phys. Rev. Lett. 40 1391

    [9]

    DaSilva L B, Celliers P, Collins G W, Budil K S, Holmes N C, Barbee Jr T W, Hammel B A, Kilkenny J D, Wallace R J, Ross M, Cauble R, Ng A, Chiu G 1997 Phys. Rev. Lett. 78 483

    [10]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [11]

    Amadou N, Brambrink E, Benuzzi-Mounaix A, Vinci T, de Ressguier T, Mazevet S, Morard G, Guyot F, Ozaki N, Miyanishi K, Koenig M 2012 AIP Conf. Proc. 1426 1525

    [12]

    Phipps Jr C R, Turner T P, Harrison R F, York G W, Osborne W Z, Anderson G K, Corlis X F, Haynes L C, Steele H S, Spicochi K C, King T R 1988 J. Appl. Phys. 64 1083

    [13]

    Pirri A N 1973 Phys. Fluids 16 1435

    [14]

    Thompson M S, Herren K A, Lin J, Pakhomov A V 2003 AIP Conf. Proc. 664 206

    [15]

    Caruso A, Gratton R 1968 Plasma Phys. 10 867

    [16]

    Singh R K, Holland O W, Narayan J 1990 J. Appl. Phys. 68 233

    [17]

    Manheimer W M, Colombant D G, Gardner J H 1982 Phys. Fluids 25 1644

    [18]

    Lindl J 1995 Phys. Plasmas 2 3933

    [19]

    Fabbro R, Max C, Fabre E 1985 Phys. Fluids 28 1463

    [20]

    Meyer B, Thiell G 1984 Phys. Fluids 27 302

    [21]

    Eliezer S 2002 The Interaction of High-Power Lasers with Plasmas (1st Ed.) (London: Institute of Physics Publishing) pp43-45

    [22]

    Gurevich A V, Pariiskaya L V, Pitaevskii L P 1966 Sov. Phys. JETP 22 449

    [23]

    Allen J E, Andrews J G 1970 J. Plasma Phys. 4 187

    [24]

    Dorozhkina D S, Semenov V E 1998 Phys. Rev. Lett. 81 2691

    [25]

    Mora P 2003 Phys. Rev. Lett. 90 185002

    [26]

    Mora P, Grismayer T 2009 Phys. Rev. Lett. 102 145001

    [27]

    Diaw A, Mora P 2012 Phys. Rev. E 86 026403

    [28]

    Chen F F (translated by Lin G H) 1980 Introduction of Plasma Physics (1st Ed.) (Beijing: People's Education Press) pp91-92 (in Chinese) [Chen F F 著 (林光海 译) 1980 等离子体物理学导论 第一版(北京: 人民教育出版社) 第 91-92 页]

    [29]

    Crow J E, Auer P L, Allen J E 1975 J. Plasma Phys. 14 65

    [30]

    Qin S, McTeer A 2007 Surface and Coatings Technology 201 6508

    [31]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625

    [32]

    Smolinsky G, Vasile M J 1979 European Polymer J. 15 87

    [33]

    DaSilva L B, Barbee Jr T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews D, Mrowka S, Moreno J C, Ress D, Trebes J E, Wan A S, Weber F 1995 Phys. Rev. Lett. 74 3991

    [34]

    Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter L 1990 Phys. Fluids B 2 2437

    [35]

    Buccellato R, Cunningham P F, Michaelis M M, Prause A 1992 Laser and Particle Beams 10 697

    [36]

    Wang C, Wang W, Sun J R, Fang Z H, Wu J, Fu S Z, Ma W X, Gu Y, Wang S J, Zhang G P, Zheng W D, Zhang T X, Peng H M, Shao P, Yi K, Lin Z Q, Wang Z S, Wang H C, Zhou B, Chen L Y, Jin C S 2005 Acta Phys. Sin. 54 202 (in Chinese) [王琛, 王伟, 孙今人, 方智恒, 吴江, 傅思祖, 马伟新, 顾援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵平, 易葵, 林尊琪, 王占山, 王洪昌, 周斌, 陈玲燕, 金春水 2005 54 202]

    [37]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843

    [38]

    Aliverdiev A, Batani D, Dezulian R, Vinci T, Benuzzi-Mounaix A, Koenig M, Malka V 2008 Phys. Rev. E 78 046404

    [39]

    Fujimoto T 2004 Plasma Spectroscopy (1st Ed.) (Oxford: Clarendon Press) p205

    [40]

    Meng S J, Li Z H, Qin Y, Ye F, Xu R K 2011 Acta Phys. Sin. 60 045211 (in Chinese) [蒙世坚, 李正宏, 秦义, 叶繁, 徐荣昆 2011 60 045211]

    [41]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comp. Phys. Commn. 49 475

    [42]

    Dhareshwar L J, Gopi N, Murali C G, Gupta N K, Godwal B K 2005 Shock Waves 14 231

  • [1]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [2]

    Yu Y Y, Xi F, Dai C D, Cai L C, Tan Y, Li X M, Wu Q, Tan H 2015 Chin. Phys. B 24 066201

    [3]

    Glenzer S H, MacGowan B J, Michel P, et al. 2010 Science 327 1228

    [4]

    Cohen T, Herren K A, Thompson M S, Lin J, Pakhomov A V 2005 AIP Conf. Proc. 766 406

    [5]

    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propulsion Power 26 609

    [6]

    Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203

    [7]

    Celliers P M, Collins G W, Hicks D G, Eggert J H 2005 J. Appl. Phys. 98 113529

    [8]

    Veeser L R, Solem J C 1978 Phys. Rev. Lett. 40 1391

    [9]

    DaSilva L B, Celliers P, Collins G W, Budil K S, Holmes N C, Barbee Jr T W, Hammel B A, Kilkenny J D, Wallace R J, Ross M, Cauble R, Ng A, Chiu G 1997 Phys. Rev. Lett. 78 483

    [10]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [11]

    Amadou N, Brambrink E, Benuzzi-Mounaix A, Vinci T, de Ressguier T, Mazevet S, Morard G, Guyot F, Ozaki N, Miyanishi K, Koenig M 2012 AIP Conf. Proc. 1426 1525

    [12]

    Phipps Jr C R, Turner T P, Harrison R F, York G W, Osborne W Z, Anderson G K, Corlis X F, Haynes L C, Steele H S, Spicochi K C, King T R 1988 J. Appl. Phys. 64 1083

    [13]

    Pirri A N 1973 Phys. Fluids 16 1435

    [14]

    Thompson M S, Herren K A, Lin J, Pakhomov A V 2003 AIP Conf. Proc. 664 206

    [15]

    Caruso A, Gratton R 1968 Plasma Phys. 10 867

    [16]

    Singh R K, Holland O W, Narayan J 1990 J. Appl. Phys. 68 233

    [17]

    Manheimer W M, Colombant D G, Gardner J H 1982 Phys. Fluids 25 1644

    [18]

    Lindl J 1995 Phys. Plasmas 2 3933

    [19]

    Fabbro R, Max C, Fabre E 1985 Phys. Fluids 28 1463

    [20]

    Meyer B, Thiell G 1984 Phys. Fluids 27 302

    [21]

    Eliezer S 2002 The Interaction of High-Power Lasers with Plasmas (1st Ed.) (London: Institute of Physics Publishing) pp43-45

    [22]

    Gurevich A V, Pariiskaya L V, Pitaevskii L P 1966 Sov. Phys. JETP 22 449

    [23]

    Allen J E, Andrews J G 1970 J. Plasma Phys. 4 187

    [24]

    Dorozhkina D S, Semenov V E 1998 Phys. Rev. Lett. 81 2691

    [25]

    Mora P 2003 Phys. Rev. Lett. 90 185002

    [26]

    Mora P, Grismayer T 2009 Phys. Rev. Lett. 102 145001

    [27]

    Diaw A, Mora P 2012 Phys. Rev. E 86 026403

    [28]

    Chen F F (translated by Lin G H) 1980 Introduction of Plasma Physics (1st Ed.) (Beijing: People's Education Press) pp91-92 (in Chinese) [Chen F F 著 (林光海 译) 1980 等离子体物理学导论 第一版(北京: 人民教育出版社) 第 91-92 页]

    [29]

    Crow J E, Auer P L, Allen J E 1975 J. Plasma Phys. 14 65

    [30]

    Qin S, McTeer A 2007 Surface and Coatings Technology 201 6508

    [31]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625

    [32]

    Smolinsky G, Vasile M J 1979 European Polymer J. 15 87

    [33]

    DaSilva L B, Barbee Jr T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews D, Mrowka S, Moreno J C, Ress D, Trebes J E, Wan A S, Weber F 1995 Phys. Rev. Lett. 74 3991

    [34]

    Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter L 1990 Phys. Fluids B 2 2437

    [35]

    Buccellato R, Cunningham P F, Michaelis M M, Prause A 1992 Laser and Particle Beams 10 697

    [36]

    Wang C, Wang W, Sun J R, Fang Z H, Wu J, Fu S Z, Ma W X, Gu Y, Wang S J, Zhang G P, Zheng W D, Zhang T X, Peng H M, Shao P, Yi K, Lin Z Q, Wang Z S, Wang H C, Zhou B, Chen L Y, Jin C S 2005 Acta Phys. Sin. 54 202 (in Chinese) [王琛, 王伟, 孙今人, 方智恒, 吴江, 傅思祖, 马伟新, 顾援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵平, 易葵, 林尊琪, 王占山, 王洪昌, 周斌, 陈玲燕, 金春水 2005 54 202]

    [37]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843

    [38]

    Aliverdiev A, Batani D, Dezulian R, Vinci T, Benuzzi-Mounaix A, Koenig M, Malka V 2008 Phys. Rev. E 78 046404

    [39]

    Fujimoto T 2004 Plasma Spectroscopy (1st Ed.) (Oxford: Clarendon Press) p205

    [40]

    Meng S J, Li Z H, Qin Y, Ye F, Xu R K 2011 Acta Phys. Sin. 60 045211 (in Chinese) [蒙世坚, 李正宏, 秦义, 叶繁, 徐荣昆 2011 60 045211]

    [41]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comp. Phys. Commn. 49 475

    [42]

    Dhareshwar L J, Gopi N, Murali C G, Gupta N K, Godwal B K 2005 Shock Waves 14 231

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生.  , 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用.  , 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [3] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响.  , 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟.  , 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [5] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] 王绩勋, 高勋, 宋超, 林景全. 纳秒激光在铜靶材中诱导冲击波的实验研究.  , 2015, 64(4): 045204. doi: 10.7498/aps.64.045204
    [7] 张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣. 抗反射疏水红外窗口的制备研究.  , 2014, 63(5): 054201. doi: 10.7498/aps.63.054201
    [8] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料.  , 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [9] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强.  , 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [10] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽.  , 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [11] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度.  , 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [12] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究.  , 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [13] 栾仕霞, 张秋菊, 武慧春, 盛政明. 激光脉冲在等离子体中的压缩分裂.  , 2008, 57(6): 3646-3652. doi: 10.7498/aps.57.3646
    [14] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究.  , 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [15] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度.  , 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [16] 卞保民, 陈 笑, 夏 铭, 杨 玲, 沈中华. 液体中激光等离子体冲击波波前传播特性研究及测试.  , 2004, 53(2): 508-513. doi: 10.7498/aps.53.508
    [17] 卞保民, 杨玲, 陈笑, 倪晓武. 激光等离子体及点爆炸空气冲击波波前运动方程的研究.  , 2002, 51(4): 809-813. doi: 10.7498/aps.51.809
    [18] 卞保民, 陈建平, 杨玲, 倪晓武, 陆建. 空气中激光等离子体冲击波的传输特性研究.  , 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
    [19] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究.  , 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热.  , 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
计量
  • 文章访问数:  6488
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-16
  • 修回日期:  2016-01-17
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map