搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光栅局域调控二维光电探测器

雷挺 吕伟明 吕文星 崔博垚 胡瑞 时文华 曾中明

引用本文:
Citation:

光栅局域调控二维光电探测器

雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明

Photogating effect in two-dimensional photodetectors

Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming
PDF
HTML
导出引用
  • 近年来, 二维材料独特的物理、化学和电子特性受到了越来越多的科研人员的关注. 特别是石墨烯、黑磷和过渡金属硫化物等二维材料具有优良的光电性能和输运性质, 使其在下一代光电子器件领域具有广阔的应用前景. 本文将主要介绍二维材料在光电探测领域上的应用优势, 概述光电探测器的基本原理和参数指标, 重点探讨光栅效应与传统光电导效应的区别, 以及提高光增益和光响应度的原因和特性, 进而回顾光栅局域调控在光电探测器中的最新进展及应用, 最后总结该类光电探测器面临的问题及对未来方向的展望.
    In recent years, due to their unique physical, chemical and electronic properties, two-dimensional materials have received more and more researchers’ attention. In particular, the excellent optoelectronic properties and transport properties of two-dimensional materials such as graphene, black phosphorous and transition metal sulfide materials make them have broad application prospects in the field of next-generation optoelectronic devices. In this article, we will mainly introduce the advantages of two-dimensional materials in the field of photodetection, outline the basic principles and parameters of photodetectors, focus on the difference between the grating effect and the traditional photoconductive effect, and the reasons and characteristics of improving optical gain and optical responsivity. Then we review the latest developments and applications of grating local control in photodetectors, and finally summarize the problems faced by the photodetectors of this kind and their prospects for the future.
      通信作者: 时文华, whshi2007@sinano.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2005600)和国家自然科学基金(批准号: 51732010)资助的课题
      Corresponding author: Shi Wen-Hua, whshi2007@sinano.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2005600) and the National Natural Science Foundation of China (Grant No. 51732010)
    [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 355 aac9439

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [8]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [9]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [10]

    Chen P, Li N, Chen X, Ong W J, Zhao X 2017 2D Materials 5 014002

    [11]

    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [12]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876Google Scholar

    [13]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [14]

    Wang J, Fang H, Wang X, Chen X, Lu W, Hu W 2017 Small 13 1700894Google Scholar

    [15]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [16]

    Ren Y X, Dai T J, He B, Liu X Z 2019 Ieee Electron Device Lett. 40 48Google Scholar

    [17]

    Guo Q S, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S J, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar

    [18]

    Li L, Wang W K, Chai Y, Li H Q, Tian M L, Zhai T Y 2017 Adv. Funct. Mater. 27 1701011Google Scholar

    [19]

    Li J, Niu L, Zheng Z, Yan F 2014 Adv. Mater. 26 5239Google Scholar

    [20]

    Park H S, Ha T J, Hong Y, Lee J H, Lee B J, You B H, Kim N D, Han M K 2008 JSID 16 1165Google Scholar

    [21]

    Aiello A, Hoque A K M H, Baten M Z, Bhattacharya P 2019 ACS Photonics 6 1289Google Scholar

    [22]

    Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W I, Choi W K 2010 Nano Lett. 10 2441Google Scholar

    [23]

    Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K 2011 Energy Environ. Sci. 4 1277Google Scholar

    [24]

    Long M, Wang P, Fang H, Hu W 2018 Adv. Funct. Mater. 29 1803807

    [25]

    Colace L, Masini G, Galluzzi F, Assanto G, Capellini G, Di Gaspare L, Palange E, Evangelisti F 1998 Appl. Phys. Lett. 72 3175Google Scholar

    [26]

    Petritz R L 1956 APS 104 1508

    [27]

    Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q, Lee S T 2006 Nano Lett. 6 1887Google Scholar

    [28]

    Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X, Chu J 2016 Nanotechnology 27 445201Google Scholar

    [29]

    Rubinelli F A 2016 Thin Solid Films 619 102Google Scholar

    [30]

    Kondo T, Hayafuji J J, Munekata H 2006 Jpn. J. Appl. Phys. 45 L663Google Scholar

    [31]

    Ellsworth D, Lu L, Lan J, Chang H, Li P, Wang Z, Hu J, Johnson B, Bian Y, Xiao J, Wu R, Wu M 2016 Nature Phys. 12 861Google Scholar

    [32]

    Xu X, Gabor N M, Alden J S, Van Der Zande A M, McEuen P L 2010 Nano Lett. 10 562Google Scholar

    [33]

    Buscema M, Barkelid M, Zwiller V, Van Der Zant H S J, Steele G A, Castellanos Gomez A 2013 Nano Lett. 13 358Google Scholar

    [34]

    Huang M, Wang M, Chen C, Ma Z, Li X, Han J, Wu Y 2016 Adv. Mater. 28 3481Google Scholar

    [35]

    Island J O, Blanter S I, Buscema M, van der Zant H S J, Castellanos Gomez A 2015 Nano Lett. 15 7853Google Scholar

    [36]

    Murali K, Abraham N, Das S, Kallatt S, Majumdar K 2019 ACS Appl. Mater. Interfaces 11 30010Google Scholar

    [37]

    Zhou X, Hu X, Zhou S, Song H, Zhang Q, Pi L, Li L, Li H, Lu J, Zhai T 2018 Adv. Mater. 30 1703286Google Scholar

    [38]

    Kim J, Park V, Jang H, et al. 2017 ACS Photonics 4 482Google Scholar

    [39]

    Wang F, Zhang Y, Gao Y, Luo P, Su J, Han W, Liu K, Li H, Zhai T 2019 Small 15 e1901347Google Scholar

    [40]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [41]

    Zhu J L, Zhang G, Wei J, Sun J L 2012 Appl. Phys. Lett. 101 123117Google Scholar

    [42]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [43]

    Nakanishi H, Bishop K J, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009 Nature 460 371Google Scholar

    [44]

    Fang H H, Hu W D 2017 Adv. Sci. 4 1700323Google Scholar

    [45]

    Wang L, Zou X, Lin J, Jiang J, Liu Y, Liu X, Zhao X, Liu Y F, Ho J C, Liao L 2019 ACS Nano 13 4804Google Scholar

    [46]

    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292Google Scholar

    [47]

    Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N, Akinwande D 2015 Nano Lett. 15 1883Google Scholar

    [48]

    Schütz M, Maschio L, Karttunen A J, Usvyat D 2017 J. Phys. Chem. Lett. 8 1290Google Scholar

    [49]

    Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2015 Sci. Rep. 4 4794Google Scholar

    [50]

    Hanlon D, Backes C, Doherty E, et al. 2015 Nat. Commun. 6 8563Google Scholar

    [51]

    Smith J B, Hagaman D, Ji H F 2016 Nanotechnology 27 215602Google Scholar

    [52]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [53]

    Liu C H, Dissanayake N M, Lee S, Lee K, Zhong Z 2012 ACS Nano 6 7172Google Scholar

    [54]

    Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo Herrero P 2011 Science 334 648Google Scholar

    [55]

    Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066Google Scholar

    [56]

    Howell S W, Ruiz I, Davids P S, Harrison R K, Smith S W, Goldflam M D, Martin J B, Martinez N J, Beechem T E 2017 Sci. Rep. 7 14651Google Scholar

    [57]

    Yu X, Dong Z, Liu Y, Liu T, Tao J, Zeng Y, Yang J K W, Wang Q J 2016 Nanoscale 8 327Google Scholar

    [58]

    Zhang K, Peng M, Yu A, Fan Y, Zhai J, Wang Z L 2019 Mater. Horizons 6 826Google Scholar

    [59]

    Fukushima S, Shimatani M, Okuda S, Ogawa S 2018 Appl. Phys. Lett. 113 061102Google Scholar

    [60]

    Cao G, Wang F, Peng M, Shao X, Yang B, Hu W, Li X, Chen J, Shan Y, Wu P, Hu L, Liu R, Gong H, Cong C, Qiu Z J 2020 Adv. Electron. Mater. 6 1901007Google Scholar

    [61]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [62]

    Miller B, Parzinger E, Vernickel A, Holleitner A W, Wurstbauer U 2015 Appl. Phys. Lett. 106 122103Google Scholar

    [63]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [64]

    Han P, Adler E R, Liu Y J, St Marie L, El Fatimy A, Melis S, Van Keuren E, Barbara P 2019 Nanotechnology 30 284004Google Scholar

    [65]

    Deng J N, Zong L Y, Zhu M S, Liao F Y, Xie Y Y, Guo Z X, Liu J, Lu B R, Wang J L, Hu W D, Zhou P, Bao W Z, Wan J 2019 Adv. Funct. Mater. 19 06242

    [66]

    Tu L, Cao R, Wang X, Chen Y, Wu S, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X, Hu W, Liu Q, Wang J, Liu M, Chu J 2020 Nat. Commun. 11 101Google Scholar

    [67]

    Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukh M, Lodha S 2018 ACS Appl. Mater. Interfaces 10 36512Google Scholar

    [68]

    Velický M, Bradley D F, Cooper A J, Hill E W, Kinloch I A, Mishchenko A, Novoselov K S, Patten H V, Toth P S, Valota A T, Worrall S D, Dryfe R A W 2014 ACS Nano 8 10089Google Scholar

    [69]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [70]

    Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P 2013 Nat. Commun. 4 1951Google Scholar

    [71]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458Google Scholar

    [72]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [73]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451Google Scholar

    [74]

    Xia F, Mueller T, Golizadeh Mojarad R, Freitag M, Lin Y M, Tsang J, Perebeinos V, Avouris P 2009 Nano Lett. 9 1039Google Scholar

    [75]

    Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X 2011 Nat. Commun. 2 579Google Scholar

    [76]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773Google Scholar

    [77]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nature Nanotech. 8 826Google Scholar

    [78]

    Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S, Bao Q 2015 ACS Nano 9 1886Google Scholar

    [79]

    Wang N, West D, Duan W, Zhang S B 2019 Nanoscale Adv. 1 470Google Scholar

    [80]

    Liu Y, Weinert M, Li L 2012 APS 108 115501

    [81]

    Xu J, Song Y J, Park J H, Lee S 2018 Solid State Electron. 144 86Google Scholar

    [82]

    Liu Y, Shivananju B N, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H, Lu Y, Qiu C W, Li S, Bao Q 2017 ACS Appl. Mater. Interfaces 9 36137Google Scholar

    [83]

    Liu B Y, You C Y, Zhao C, Shen G L, Liu Y W, Li Y F, Yan H, Zhang Y Z 2019 Chin. Opt. Lett. 17 020002Google Scholar

    [84]

    Lan C, Li C, Wang S, He T, Zhou Z, Wei D, Guo H, Yang H, Liu Y 2017 J. Mater. Chem. C 5 1494Google Scholar

    [85]

    Kang B, Kim Y, Yoo W J, Lee C 2018 Small 14 1802593Google Scholar

    [86]

    Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K, Bao Q 2017 Small 13 1700268Google Scholar

    [87]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J 2014 Sci. Rep. 4 3826

    [88]

    Chang P H, Li C S, Fu F Y, Huang K Y, Chou A S, Wu C I 2018 Adv. Funct. Mater. 28 1800179Google Scholar

    [89]

    Qi Z Y, Yang T F, Li D, Li H L, Wang X, Zhang X H, Li F, Zheng W H, Fan P, Zhuang X J, Pan A L 2019 Mater. Horizons 6 1474Google Scholar

    [90]

    Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, Zhang X, Qi Z, Liu H, Feng Y, Hu W, Miao F, Sun L, Duan X, Pan A 2017 Nat. Commun. 8 1906Google Scholar

    [91]

    Krause M, Dent E W, Bear J E, Loureiro J J, Gertler F B 2003 Annu. Rev. Cell. Dev. Biol. 19 541Google Scholar

    [92]

    Shim J, Kang D H, Kim Y, Kum H, Kong W, Bae S H, Almansouri I, Lee K, Park J H, Kim J 2018 Carbon 133 78Google Scholar

    [93]

    Ye L, Wang P, Luo W J, Gong F, Liao L, Liu T D, Tong L, Zang J F, Xu J B, Hu W D 2017 Nano Energy 37 53Google Scholar

    [94]

    Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Science 7 1901637Google Scholar

  • 图 1  光栅效应特性 (a) 光栅效应示意图[39]; (b) 光照后, 转移特性曲线${I}_{\mathrm{d}\mathrm{s}}\text-{V}_{\mathrm{g}}$, 其中, 黑线、红线和蓝线分别代表暗电流、光栅效应下的光电流以及光栅效应和光电导效应的叠加的光电流; (c)光栅效应器件中的能带排布示意图[44].

    Fig. 1.  The characteristics of the photogating effect: (a) Schematic diagram of the photogating effect[39]; (b) the ${I}_{\mathrm{d}\mathrm{s}}\text-{V}_{\mathrm{g}}$ transfer chara-cteristic curve after illumination. The black line, red line and blue line represent dark current, photocurrent of photogating effect, the superimposed photocurrent of photogating effect and photoconductive effect, respectively; (c) schematic diagram of band arrangement in photogating effect devices[44].

    图 2  单一二维材料光电探测器 (a) 双层石墨烯异质结中的光激发热载流子隧穿[6]; (b) p型轻掺杂Si/SiO2衬底上的石墨烯光电探测器的示意图[55]; (c) p型InSb衬底上石墨烯场效应晶体管的示意图[59]; (d) 电荷陷阱模型和简化的能带图[40]; (e) 光响应度与顶栅Vtg的关系[65]; (f) 不同衬底下的光响应度[58]; (g) 在不同入射功率下, 在最大跨导附近实现最大光电流[35]; (h) 光电流与时间的关系[67].

    Fig. 2.  Single two-dimensional material photodetector: (a) Photoexcited hot carrier tunnelling in graphene double-layer heterostructures[6]; (b) schematic diagram of the graphene photodetector on lightly p-doped silicon/SiO2 substrate[55]; (c) schematic diagram of the InSb-based graphene field effect transistor (FET)[59]; (d) charge trapping model and simplified energy band diagram[40]; (e) the relationship between photoresponsivity and Vtg[65]; (f) photoresponsivity under different substrates[58]; (g) the maximum photocurrent is realized near the maximum transconductance at different incident power[35]; (h) the relationship between photocurrent and time[67].

    图 3  石墨烯异质结光电探测器: (a) 石墨烯/ MoS2异质结光电探测器的示意图; (b) 石墨烯/Bi2Te3异质结光电探测器的示意图; (c) 石墨烯/BP异质结光电探测器的示意图; (d)光响应度与光照强度的关系; (e)光响应度与波长的关系(VD = –3 V, VG = –30 V); (f)在波长为980 nm, 光电流和光响应随入射光强的关系 (VDS = 1 V, VG = 0 V).

    Fig. 3.  The photodetectors based on graphene heterostructures: (a) Schematic of device architecture graphene/MoS2 photodetector[77]; (b) schematic of the heterostructure phototransistor device[78]; (c) graphene/BP heterostructure photodetector[82]; (d) the relationship between photoresponsivity and light intensity[89]; (e) responsivity as a function of the wavelength (VD = –3 V, VG = –30 V)[85]; (f) photocurrent and photoresponsivity versus incident light power at 980 nm. (VDS = 1 V, VG = 0 V)[86].

    图 4  基于光栅效应的PN异质结光电探测器 (a) PbI2/WS2异质结构光电探测器; (b) PbI2/WS2光电探测器的光响应时间[89]; (c) WSe2 /SnS2多电极异质结构背栅器件的示意图; (d) WSe2/SnS2异质结的能带结构和光激发、层间弛豫过程的示意图[90]; (e)基于光栅效应的WSe2/BP光电探测器示意图; (f) 在1 mW/cm2的入射功率密度和0.5 V偏置下, 光增益G和探测率D对不同波长照明的依赖关系[93]; (g) 在637 nm光照下器件的示意图; (h)顶栅电极侧面和重叠区域之间形成导电通道Vtg; (i)一个调制周期: 上升时间为10 µs、下降时间为10 µs的快速分量和20 µs的慢速分量组成[94].

    Fig. 4.  PN heterojunction photodetector based on photogating effect: (a) Schematic device structure of PbI2/WS2 photodetector fabricated on SiO2/Si substrate; (b) time-resolved photoresponse of PbI2/WS2 phototransistors[89]; (c) schematic diagram of the multi-electrode WSe2/SnS2 vdW heterostructure backgate device; (d) schematic diagram of WSe2/SnS2 heterostructure band structure and photoexcitation, interlayer relaxation process in WSe2/SnS2 heterojunction[90]; (e) schematic illustration of the BP on WSe2 photodetector with photogate structure; (f) the dependence of the photogain $ G $ and detectivity $ {D}^{*} $ on the different wavelength illumination at 1 mW/cm2 incident illumination power density and 0.5 V bias[93]; (g) schematic illustration of the device in the dark under 637 nm illumination; (h) a conductive path for Vtg is formed between side top-gate electrode and overlapped region; (i) a single modulation cycle The rise time is ≈10 µs The fall time consists of a fast component of ≈10 µs and a slow component of ≈ 20 µs[94].

    图 5  基于光栅效应的光电探测器新结构 (a)器件结构示意图; (b)器件结构能带图

    Fig. 5.  New structure of photodetector based on photogating effect: (a) Schematic diagram of device structure; (b) sche-matic diagram of energy band structure

    表 1  基于石墨烯异质结(Gr)的光栅局域调控光电探测器

    Table 1.  Graphene(Gr)-based photodetectors with grating photogating.

    MaterialResponsivity/(A·W–1)GainResponse time/msDetection range/nmRef.
    Gr/MoSe21.3 × 10422000.0550[83]
    Gr/MoTe2970.824.69 × 10878.01064[86]
    Gr/ReS27 × 10530.0550 nm[85]
    Gr/WS2950340–680 nm[84]
    Gr/MoS2107108650[87]
    Gr/BP55.7536.0655[82]
    Gr/BiI36 × 1068.0532[88]
    Gr/PbSe6613782425.0[16]
    Gr/Bi2Te335838.7532—1550[78]
    Gr/MoS25 × 108635[77]
    Gr/Bi2Se38.18near-IR 750—2500[38]
    下载: 导出CSV
    Baidu
  • [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 355 aac9439

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [8]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [9]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [10]

    Chen P, Li N, Chen X, Ong W J, Zhao X 2017 2D Materials 5 014002

    [11]

    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [12]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876Google Scholar

    [13]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [14]

    Wang J, Fang H, Wang X, Chen X, Lu W, Hu W 2017 Small 13 1700894Google Scholar

    [15]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [16]

    Ren Y X, Dai T J, He B, Liu X Z 2019 Ieee Electron Device Lett. 40 48Google Scholar

    [17]

    Guo Q S, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S J, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar

    [18]

    Li L, Wang W K, Chai Y, Li H Q, Tian M L, Zhai T Y 2017 Adv. Funct. Mater. 27 1701011Google Scholar

    [19]

    Li J, Niu L, Zheng Z, Yan F 2014 Adv. Mater. 26 5239Google Scholar

    [20]

    Park H S, Ha T J, Hong Y, Lee J H, Lee B J, You B H, Kim N D, Han M K 2008 JSID 16 1165Google Scholar

    [21]

    Aiello A, Hoque A K M H, Baten M Z, Bhattacharya P 2019 ACS Photonics 6 1289Google Scholar

    [22]

    Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W I, Choi W K 2010 Nano Lett. 10 2441Google Scholar

    [23]

    Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K 2011 Energy Environ. Sci. 4 1277Google Scholar

    [24]

    Long M, Wang P, Fang H, Hu W 2018 Adv. Funct. Mater. 29 1803807

    [25]

    Colace L, Masini G, Galluzzi F, Assanto G, Capellini G, Di Gaspare L, Palange E, Evangelisti F 1998 Appl. Phys. Lett. 72 3175Google Scholar

    [26]

    Petritz R L 1956 APS 104 1508

    [27]

    Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q, Lee S T 2006 Nano Lett. 6 1887Google Scholar

    [28]

    Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X, Chu J 2016 Nanotechnology 27 445201Google Scholar

    [29]

    Rubinelli F A 2016 Thin Solid Films 619 102Google Scholar

    [30]

    Kondo T, Hayafuji J J, Munekata H 2006 Jpn. J. Appl. Phys. 45 L663Google Scholar

    [31]

    Ellsworth D, Lu L, Lan J, Chang H, Li P, Wang Z, Hu J, Johnson B, Bian Y, Xiao J, Wu R, Wu M 2016 Nature Phys. 12 861Google Scholar

    [32]

    Xu X, Gabor N M, Alden J S, Van Der Zande A M, McEuen P L 2010 Nano Lett. 10 562Google Scholar

    [33]

    Buscema M, Barkelid M, Zwiller V, Van Der Zant H S J, Steele G A, Castellanos Gomez A 2013 Nano Lett. 13 358Google Scholar

    [34]

    Huang M, Wang M, Chen C, Ma Z, Li X, Han J, Wu Y 2016 Adv. Mater. 28 3481Google Scholar

    [35]

    Island J O, Blanter S I, Buscema M, van der Zant H S J, Castellanos Gomez A 2015 Nano Lett. 15 7853Google Scholar

    [36]

    Murali K, Abraham N, Das S, Kallatt S, Majumdar K 2019 ACS Appl. Mater. Interfaces 11 30010Google Scholar

    [37]

    Zhou X, Hu X, Zhou S, Song H, Zhang Q, Pi L, Li L, Li H, Lu J, Zhai T 2018 Adv. Mater. 30 1703286Google Scholar

    [38]

    Kim J, Park V, Jang H, et al. 2017 ACS Photonics 4 482Google Scholar

    [39]

    Wang F, Zhang Y, Gao Y, Luo P, Su J, Han W, Liu K, Li H, Zhai T 2019 Small 15 e1901347Google Scholar

    [40]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [41]

    Zhu J L, Zhang G, Wei J, Sun J L 2012 Appl. Phys. Lett. 101 123117Google Scholar

    [42]

    Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [43]

    Nakanishi H, Bishop K J, Kowalczyk B, Nitzan A, Weiss E A, Tretiakov K V, Apodaca M M, Klajn R, Stoddart J F, Grzybowski B A 2009 Nature 460 371Google Scholar

    [44]

    Fang H H, Hu W D 2017 Adv. Sci. 4 1700323Google Scholar

    [45]

    Wang L, Zou X, Lin J, Jiang J, Liu Y, Liu X, Zhao X, Liu Y F, Ho J C, Liao L 2019 ACS Nano 13 4804Google Scholar

    [46]

    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292Google Scholar

    [47]

    Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N, Akinwande D 2015 Nano Lett. 15 1883Google Scholar

    [48]

    Schütz M, Maschio L, Karttunen A J, Usvyat D 2017 J. Phys. Chem. Lett. 8 1290Google Scholar

    [49]

    Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2015 Sci. Rep. 4 4794Google Scholar

    [50]

    Hanlon D, Backes C, Doherty E, et al. 2015 Nat. Commun. 6 8563Google Scholar

    [51]

    Smith J B, Hagaman D, Ji H F 2016 Nanotechnology 27 215602Google Scholar

    [52]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [53]

    Liu C H, Dissanayake N M, Lee S, Lee K, Zhong Z 2012 ACS Nano 6 7172Google Scholar

    [54]

    Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo Herrero P 2011 Science 334 648Google Scholar

    [55]

    Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066Google Scholar

    [56]

    Howell S W, Ruiz I, Davids P S, Harrison R K, Smith S W, Goldflam M D, Martin J B, Martinez N J, Beechem T E 2017 Sci. Rep. 7 14651Google Scholar

    [57]

    Yu X, Dong Z, Liu Y, Liu T, Tao J, Zeng Y, Yang J K W, Wang Q J 2016 Nanoscale 8 327Google Scholar

    [58]

    Zhang K, Peng M, Yu A, Fan Y, Zhai J, Wang Z L 2019 Mater. Horizons 6 826Google Scholar

    [59]

    Fukushima S, Shimatani M, Okuda S, Ogawa S 2018 Appl. Phys. Lett. 113 061102Google Scholar

    [60]

    Cao G, Wang F, Peng M, Shao X, Yang B, Hu W, Li X, Chen J, Shan Y, Wu P, Hu L, Liu R, Gong H, Cong C, Qiu Z J 2020 Adv. Electron. Mater. 6 1901007Google Scholar

    [61]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [62]

    Miller B, Parzinger E, Vernickel A, Holleitner A W, Wurstbauer U 2015 Appl. Phys. Lett. 106 122103Google Scholar

    [63]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [64]

    Han P, Adler E R, Liu Y J, St Marie L, El Fatimy A, Melis S, Van Keuren E, Barbara P 2019 Nanotechnology 30 284004Google Scholar

    [65]

    Deng J N, Zong L Y, Zhu M S, Liao F Y, Xie Y Y, Guo Z X, Liu J, Lu B R, Wang J L, Hu W D, Zhou P, Bao W Z, Wan J 2019 Adv. Funct. Mater. 19 06242

    [66]

    Tu L, Cao R, Wang X, Chen Y, Wu S, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X, Hu W, Liu Q, Wang J, Liu M, Chu J 2020 Nat. Commun. 11 101Google Scholar

    [67]

    Thakar K, Mukherjee B, Grover S, Kaushik N, Deshmukh M, Lodha S 2018 ACS Appl. Mater. Interfaces 10 36512Google Scholar

    [68]

    Velický M, Bradley D F, Cooper A J, Hill E W, Kinloch I A, Mishchenko A, Novoselov K S, Patten H V, Toth P S, Valota A T, Worrall S D, Dryfe R A W 2014 ACS Nano 8 10089Google Scholar

    [69]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [70]

    Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P 2013 Nat. Commun. 4 1951Google Scholar

    [71]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458Google Scholar

    [72]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [73]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451Google Scholar

    [74]

    Xia F, Mueller T, Golizadeh Mojarad R, Freitag M, Lin Y M, Tsang J, Perebeinos V, Avouris P 2009 Nano Lett. 9 1039Google Scholar

    [75]

    Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X 2011 Nat. Commun. 2 579Google Scholar

    [76]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773Google Scholar

    [77]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nature Nanotech. 8 826Google Scholar

    [78]

    Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S, Bao Q 2015 ACS Nano 9 1886Google Scholar

    [79]

    Wang N, West D, Duan W, Zhang S B 2019 Nanoscale Adv. 1 470Google Scholar

    [80]

    Liu Y, Weinert M, Li L 2012 APS 108 115501

    [81]

    Xu J, Song Y J, Park J H, Lee S 2018 Solid State Electron. 144 86Google Scholar

    [82]

    Liu Y, Shivananju B N, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H, Lu Y, Qiu C W, Li S, Bao Q 2017 ACS Appl. Mater. Interfaces 9 36137Google Scholar

    [83]

    Liu B Y, You C Y, Zhao C, Shen G L, Liu Y W, Li Y F, Yan H, Zhang Y Z 2019 Chin. Opt. Lett. 17 020002Google Scholar

    [84]

    Lan C, Li C, Wang S, He T, Zhou Z, Wei D, Guo H, Yang H, Liu Y 2017 J. Mater. Chem. C 5 1494Google Scholar

    [85]

    Kang B, Kim Y, Yoo W J, Lee C 2018 Small 14 1802593Google Scholar

    [86]

    Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K, Bao Q 2017 Small 13 1700268Google Scholar

    [87]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J 2014 Sci. Rep. 4 3826

    [88]

    Chang P H, Li C S, Fu F Y, Huang K Y, Chou A S, Wu C I 2018 Adv. Funct. Mater. 28 1800179Google Scholar

    [89]

    Qi Z Y, Yang T F, Li D, Li H L, Wang X, Zhang X H, Li F, Zheng W H, Fan P, Zhuang X J, Pan A L 2019 Mater. Horizons 6 1474Google Scholar

    [90]

    Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, Zhang X, Qi Z, Liu H, Feng Y, Hu W, Miao F, Sun L, Duan X, Pan A 2017 Nat. Commun. 8 1906Google Scholar

    [91]

    Krause M, Dent E W, Bear J E, Loureiro J J, Gertler F B 2003 Annu. Rev. Cell. Dev. Biol. 19 541Google Scholar

    [92]

    Shim J, Kang D H, Kim Y, Kum H, Kong W, Bae S H, Almansouri I, Lee K, Park J H, Kim J 2018 Carbon 133 78Google Scholar

    [93]

    Ye L, Wang P, Luo W J, Gong F, Liao L, Liu T D, Tong L, Zang J F, Xu J B, Hu W D 2017 Nano Energy 37 53Google Scholar

    [94]

    Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Science 7 1901637Google Scholar

  • [1] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器.  , 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [2] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究.  , 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能.  , 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [5] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质.  , 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [6] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [7] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控.  , 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [8] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器.  , 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [9] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质.  , 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [10] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控.  , 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [11] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [12] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用.  , 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [14] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [15] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究.  , 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [18] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [19] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究.  , 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [20] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究.  , 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
计量
  • 文章访问数:  14019
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-09-03
  • 上网日期:  2021-01-08
  • 刊出日期:  2021-01-20

/

返回文章
返回
Baidu
map