搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临界中性Gauss-Bonnet-anti-de Sitter黑洞复杂度演化

梁华志 张靖仪

引用本文:
Citation:

临界中性Gauss-Bonnet-anti-de Sitter黑洞复杂度演化

梁华志, 张靖仪

Evolution of complexity for critical neutral Gauss-Bonnet-anti-de Sitter black holes

Liang Hua-Zhi, Zhang Jing-Yi
PDF
HTML
导出引用
  • 利用Fan和Liang (Fan Z Y, Liang H Z 2019 Phys. Rev. D 100 086016)研究一般高阶导数引力复杂度的方法, 对临界中性Gauss-Bonnet-anti-de Sitter (Gauss-Bonnet-anti-de Sitter, AdS)黑洞的复杂度演化进行研究, 并且将研究结果和一般中性Gauss-Bonnet-AdS黑洞的结果进行了比较. 研究发现, 二者的复杂度演化的整体规律是一致的, 它们的主要区别在无量纲的临界时间上. 对于五维的临界中性Gauss-Bonnet-AdS黑洞, 当黑洞视界面为平面或者球面时, 不同大小的黑洞的无量纲的临界时间相同, 都取到了最小值. 当维度超过五维时, 不同大小的球对称临界中性Gauss-Bonnet-AdS黑洞的无量纲临界时间的差异明显要比一般的情况小. 这些差异很可能和中性Gauss-Bonnet-AdS黑洞的临界性有关.
    General Gauss-Bonnet gravity with a cosmological constant allows two anti-de Sitter (AdS) spacetimes to be taken as its vacuum solutions. It is found that there is a critical point in the parameter space where the two AdS vacuums coalesce into one, which is very different from the general Gauss-Bonnet gravity. Susskind’s team proposed a Complexity/Action duality based on AdS/CFT duality, which provides a new method of studying the complexity of black holes. Fan and Liang (Fan Z Y, Liang H Z 2019 Phys. Rev. D 100 086016) gave the formula of the evolution of complexity for general higher derivative gravity, and discussed the complexity evolution of the neutral planar Gauss-Bonnet-AdS black holes in detail by the numerical method. With the method of studying the complexity of general higher derivative gravity proposed by Fan and Liang (2019), we investigate the complexity evolution of critical neutral Gauss-Bonnet-AdS black holes, and compare these results with the results of the general neutral Gauss-Bonnet-AdS black holes, showing that the overall regularities of the evolution of the complexity of these two objects are consistent, and their main difference lies in the dimensionless critical time. As for the five-dimensional critical neutral Gauss-Bonnet-AdS black holes, when the event horizon of the black holes is flat or spherical, the dimensionless critical times of black holes with different sizes are identical, all reaching their minimum values. While in the higher dimensional cases, the differences in dimensionless critical time among spherically symmetric critical neutral Gauss-Bonnet-AdS black holes with different sizes are obviously less than those of general ones. These differences are probably related to the criticality of the neutral Gauss-Bonnet-AdS black holes.
      通信作者: 张靖仪, zhangjy@gzhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11873025)资助的课题
      Corresponding author: Zhang Jing-Yi, zhangjy@gzhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11873025)
    [1]

    ’t Hooft G 1993 arXiv: gr-qc/9310026

    [2]

    Susskind L 1995 J. Math. Phys. 36 6377Google Scholar

    [3]

    Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231Google Scholar

    [4]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253Google Scholar

    [5]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105Google Scholar

    [6]

    Susskind L 2016 Fortsch. Phys. 64 24Google Scholar

    [7]

    Susskind L 2016 Fortsch. Phys. 64 44Google Scholar

    [8]

    Stanford D, Susskind L 2014 Phys. Rev. D 90 126007Google Scholar

    [9]

    Brown A R, Roberts D A, Susskind L, Swingle B, Zhao Y 2016 Phys. Rev. Lett 116 191301Google Scholar

    [10]

    Brown A R, Roberts D A, Susskind L, Swingle B, Zhao Y 2016 Phys. Rev. D 93 086006Google Scholar

    [11]

    Fan Z Y, Liang H Z 2019 Phys. Rev. D 100 086016Google Scholar

    [12]

    梁华志, 张靖仪 2020 湖南文理学院学报 (自然科学版) 32 26Google Scholar

    Liang H Z, Zhang J Y 2020 J. Hunan Univ. Arts Sci. (Science and Technology) 32 26Google Scholar

    [13]

    Mahapatra S, Roy P 2018 J. High Energy Phys. 2018 138Google Scholar

    [14]

    Chapman S, Marrochio H, Myers R C 2017 J. High Energy Phys. 2017 62Google Scholar

    [15]

    Carmi D, Myers R C, Rath P 2017 J. High Energy Phys. 2017 118Google Scholar

    [16]

    Yang R Q, Niu C, Kim K Y 2017 J. High Energy Phys. 2017 42Google Scholar

    [17]

    Yang R Q 2017 Phys. Rev. D 95 086017Google Scholar

    [18]

    Chapman S, Marrochio H, Myers R C 2018 J. High Energy Phys. 2018 46Google Scholar

    [19]

    Chapman S, Marrochio H, Myers R C 2018 J. High Energy Phys. 2018 114Google Scholar

    [20]

    Moosa M 2018 J. High Energy Phys. 2018 31Google Scholar

    [21]

    Alishahiha M, Astaneh A F, Mozaffar M R M, Mollabashi A 2018 J. High Energy Phys. 2018 42Google Scholar

    [22]

    An Y S, Peng R H 2018 Phys. Rev. D 97 066022Google Scholar

    [23]

    Jiang J 2018 Phys. Rev. D 98 086018Google Scholar

    [24]

    Yang R Q, Niu C, Zhang C Y, Kim K Y 2018 J. High Energy Phys. 2018 82

    [25]

    Yang R, Jeong H S, Niu C, Kim K Y 2019 J. High Energy Phys. 2019 146Google Scholar

    [26]

    Cai R G, Ruan S M, Wang S J, Yang R Q, Peng R H 2016 J. High Energy Phys. 2016 161Google Scholar

    [27]

    Lehner L, Myers R C, Poisson E, Sorkin R D 2016 Phys. Rev. D 94 084046Google Scholar

    [28]

    Huang H, Feng X H, Lu H 2017 Phys. Lett. B 769 357Google Scholar

    [29]

    Cano P A, Hennigar R A, Marrochio H 2018 Phys. Rev. Lett. 121 121602Google Scholar

    [30]

    Jiang J, Zhang H 2019 Phys. Rev. D 99 086005Google Scholar

    [31]

    Feng X H, Liu H S 2019 Eur. Phys. J. C 79 40Google Scholar

    [32]

    Alishahiha M, Astaneh A F, Naseh A, Vahidinia M H 2017 J. High Energy Phys. 2017 9Google Scholar

    [33]

    Carmi D, Chapman S, Marrochio H, Myers R C, Sugishita S 2017 J. High Energy Phys. 2017 188Google Scholar

    [34]

    Jiang J, Ge B X 2019 Phys. Rev. D 99 126006Google Scholar

    [35]

    Moosa M 2018 Phys. Rev. D 97 106016Google Scholar

    [36]

    Fan Z Y, Chen B, Lü H 2016 Eur. Phys. J. C 76 542Google Scholar

    [37]

    Haking S W, Page D N 1983 Commun. Math. Phys. 87 577Google Scholar

    [38]

    刘显明, 雷焱林, 陈丽, 韩成 2015 湖北民族学院学报(自然科学版) 33 1Google Scholar

    Liu X M, Lei Y L, Chen L, Han C 2015 J. Hubei Univ. Nationalities (Nat. Sci. Ed.) 33 1Google Scholar

    [39]

    Brigante M, Liu H, Myers R C, Shenker S, Yaida S 2008 Phys. Rev. D 77 126006Google Scholar

    [40]

    Brigante M, Liu H, Myers R C, Shenker S, Yaida S 2008 Phys. Rev. Lett. 100 191601Google Scholar

    [41]

    Buchel A, Myers R C 2009 J. High Energy Phys. 2009 8Google Scholar

    [42]

    Camanho X O, Edelstein J D 2010 J. High Energy Phys. 2010 7Google Scholar

    [43]

    Wald R M 1993 Phys. Rev. D 48 3427Google Scholar

    [44]

    Iyer V, Wald R M 1994 Phys. Rev. D 50 846Google Scholar

    [45]

    Fan Z Y, Lü H 2015 Phys. Rev. D 91 064009Google Scholar

  • 图 1  一般的中性双边AdS黑洞Wheeler-Dewitt片

    Fig. 1.  The Wheeler-DeWitt patch for a general neutral two-sided AdS black hole.

    图 2  临界中性Gauss-Bonnet-AdS黑洞的复杂度演化图 (a) $D = 5, \quad k = 0$; (b) $D = 5, \quad k = 1$; (c) $D = 6, \quad k = 0$; (d) $D = 6, \quad k = 1$; (e) $D = 7, \quad k = 0$; (f) $D = 7, \quad k = 1$

    Fig. 2.  Complexity evolution diagram of the critical neutral Gauss-Bonnet-AdS black holes: (a) $D = 5, \quad k = 0$; (b) $D = 5, \quad k = 1$; (c) $D = 6, \quad k = 0$; (d) $D = 6, \quad k = 1$; (e) $D = 7, \quad k = 0$; (f) $D = 7, \quad k = 1$.

    图 3  临界中性Gauss-Bonnet-AdS黑洞的复杂度微分图 (a) $D = 5, \quad k = 0$; (b) $D = 5, \quad k = 1$; (c) $D = 6, \quad k = 0$; (d) $D = 6, \quad k = 1$; (e) $D = 7, \quad k = 0$; (f) $D = 7, \quad k = 1$

    Fig. 3.  Complexity difference diagram of the critical neutral Gauss-Bonnet-AdS black holes: (a) $D = 5, \quad k = 0$; (b) $D = 5, \quad k = 1$; (c) $D = 6, \quad k = 0$; (d) $D = 6, \quad k = 1$; (e) $D = 7, \quad k = 0$; (f) $D = 7, \quad k = 1$.

    表 1  $k = 0$时, 临界中性Gauss-Bonnet-AdS黑洞无量纲的临界时间$T{t_{\rm{c}}}$($\lambda = 0.05$)

    Table 1.  Dimensionless critical time $T{t_{\rm{c}}}$ of critical neutral Gauss-Bonnet-AdS black holes ($\lambda = 0.05$) for $k = 0$.

    维度$T{t_{\rm{c} } }\,({r_{\rm{h} } }/\ell = 1)$$T{t_{\rm{c} } }\,({r_{\rm{h} } }/\ell = 3)$$T{t_{\rm{c} } }\,({r_{\rm{h} } }/\ell = 5)$
    $D = 5$000
    $D = 6$0.1624600.1624600.162460
    $D = 7$0.2886750.2886750.288675
    $D = 8$0.3987360.3987360.398736
    下载: 导出CSV

    表 2  $k = 1$时, 临界中性Gauss-Bonnet-AdS黑洞无量纲的临界时间$T{t_{\rm{c}}}$($\lambda = 0.05$)

    Table 2.  Dimensionless critical time $T{t_{\rm{c}}}$ of critical neutral Gauss-Bonnet-AdS black holes ($\lambda = 0.05$) for $k = 1$.

    维度$T{t_{\rm{c} } }\,({r_{\rm{h} } }/\ell = 1)$$T{t_{\rm{c} } }\,({r_{\rm{h} } }/\ell = 3)$$T{t_{\rm{c} } }\,({r_{\rm{h} } }/\ell = 5)$
    $D = 5$000
    $D = 6$0.2097450.1682240.164552
    $D = 7$0.3597520.2973910.291841
    $D = 8$0.4906530.4099810.402820
    下载: 导出CSV
    Baidu
  • [1]

    ’t Hooft G 1993 arXiv: gr-qc/9310026

    [2]

    Susskind L 1995 J. Math. Phys. 36 6377Google Scholar

    [3]

    Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231Google Scholar

    [4]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253Google Scholar

    [5]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105Google Scholar

    [6]

    Susskind L 2016 Fortsch. Phys. 64 24Google Scholar

    [7]

    Susskind L 2016 Fortsch. Phys. 64 44Google Scholar

    [8]

    Stanford D, Susskind L 2014 Phys. Rev. D 90 126007Google Scholar

    [9]

    Brown A R, Roberts D A, Susskind L, Swingle B, Zhao Y 2016 Phys. Rev. Lett 116 191301Google Scholar

    [10]

    Brown A R, Roberts D A, Susskind L, Swingle B, Zhao Y 2016 Phys. Rev. D 93 086006Google Scholar

    [11]

    Fan Z Y, Liang H Z 2019 Phys. Rev. D 100 086016Google Scholar

    [12]

    梁华志, 张靖仪 2020 湖南文理学院学报 (自然科学版) 32 26Google Scholar

    Liang H Z, Zhang J Y 2020 J. Hunan Univ. Arts Sci. (Science and Technology) 32 26Google Scholar

    [13]

    Mahapatra S, Roy P 2018 J. High Energy Phys. 2018 138Google Scholar

    [14]

    Chapman S, Marrochio H, Myers R C 2017 J. High Energy Phys. 2017 62Google Scholar

    [15]

    Carmi D, Myers R C, Rath P 2017 J. High Energy Phys. 2017 118Google Scholar

    [16]

    Yang R Q, Niu C, Kim K Y 2017 J. High Energy Phys. 2017 42Google Scholar

    [17]

    Yang R Q 2017 Phys. Rev. D 95 086017Google Scholar

    [18]

    Chapman S, Marrochio H, Myers R C 2018 J. High Energy Phys. 2018 46Google Scholar

    [19]

    Chapman S, Marrochio H, Myers R C 2018 J. High Energy Phys. 2018 114Google Scholar

    [20]

    Moosa M 2018 J. High Energy Phys. 2018 31Google Scholar

    [21]

    Alishahiha M, Astaneh A F, Mozaffar M R M, Mollabashi A 2018 J. High Energy Phys. 2018 42Google Scholar

    [22]

    An Y S, Peng R H 2018 Phys. Rev. D 97 066022Google Scholar

    [23]

    Jiang J 2018 Phys. Rev. D 98 086018Google Scholar

    [24]

    Yang R Q, Niu C, Zhang C Y, Kim K Y 2018 J. High Energy Phys. 2018 82

    [25]

    Yang R, Jeong H S, Niu C, Kim K Y 2019 J. High Energy Phys. 2019 146Google Scholar

    [26]

    Cai R G, Ruan S M, Wang S J, Yang R Q, Peng R H 2016 J. High Energy Phys. 2016 161Google Scholar

    [27]

    Lehner L, Myers R C, Poisson E, Sorkin R D 2016 Phys. Rev. D 94 084046Google Scholar

    [28]

    Huang H, Feng X H, Lu H 2017 Phys. Lett. B 769 357Google Scholar

    [29]

    Cano P A, Hennigar R A, Marrochio H 2018 Phys. Rev. Lett. 121 121602Google Scholar

    [30]

    Jiang J, Zhang H 2019 Phys. Rev. D 99 086005Google Scholar

    [31]

    Feng X H, Liu H S 2019 Eur. Phys. J. C 79 40Google Scholar

    [32]

    Alishahiha M, Astaneh A F, Naseh A, Vahidinia M H 2017 J. High Energy Phys. 2017 9Google Scholar

    [33]

    Carmi D, Chapman S, Marrochio H, Myers R C, Sugishita S 2017 J. High Energy Phys. 2017 188Google Scholar

    [34]

    Jiang J, Ge B X 2019 Phys. Rev. D 99 126006Google Scholar

    [35]

    Moosa M 2018 Phys. Rev. D 97 106016Google Scholar

    [36]

    Fan Z Y, Chen B, Lü H 2016 Eur. Phys. J. C 76 542Google Scholar

    [37]

    Haking S W, Page D N 1983 Commun. Math. Phys. 87 577Google Scholar

    [38]

    刘显明, 雷焱林, 陈丽, 韩成 2015 湖北民族学院学报(自然科学版) 33 1Google Scholar

    Liu X M, Lei Y L, Chen L, Han C 2015 J. Hubei Univ. Nationalities (Nat. Sci. Ed.) 33 1Google Scholar

    [39]

    Brigante M, Liu H, Myers R C, Shenker S, Yaida S 2008 Phys. Rev. D 77 126006Google Scholar

    [40]

    Brigante M, Liu H, Myers R C, Shenker S, Yaida S 2008 Phys. Rev. Lett. 100 191601Google Scholar

    [41]

    Buchel A, Myers R C 2009 J. High Energy Phys. 2009 8Google Scholar

    [42]

    Camanho X O, Edelstein J D 2010 J. High Energy Phys. 2010 7Google Scholar

    [43]

    Wald R M 1993 Phys. Rev. D 48 3427Google Scholar

    [44]

    Iyer V, Wald R M 1994 Phys. Rev. D 50 846Google Scholar

    [45]

    Fan Z Y, Lü H 2015 Phys. Rev. D 91 064009Google Scholar

  • [1] 贺少波, 孙克辉, 王会海. 分数阶混沌系统的Adomian分解法求解及其复杂性分析.  , 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    [2] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究.  , 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [3] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究.  , 2013, 62(10): 104702. doi: 10.7498/aps.62.104702
    [4] 曹晓霞, 马松华, 任清褒, 杨征. (2+1)维破裂孤子方程的多 Solitoff 解及其演化.  , 2012, 61(14): 140505. doi: 10.7498/aps.61.140505
    [5] 蒋黎红, 马松华, 方建平, 吴红玉. (3+1)维Burgers系统的新孤子解及其演化.  , 2012, 61(2): 020510. doi: 10.7498/aps.61.020510
    [6] 孙克辉, 贺少波, 尹林子, 阿地力·多力坤. 模糊熵算法在混沌序列复杂度分析中的应用.  , 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [7] 房超, 孙俊, 赖宇阳. 基于复杂性测度的高温气冷堆模拟机运行模式识别及诊断研究.  , 2012, 61(17): 170515. doi: 10.7498/aps.61.170515
    [8] 陈小军, 李赞, 白宝明, 蔡觉平. 一种确定混沌伪随机序列复杂度的模糊关系熵测度.  , 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [9] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化.  , 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [10] 袁春华, 李晓红, 唐多昌, 杨宏道, 李国强. Nd:YAG纳秒激光诱导硅表面微结构的演化.  , 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [11] 何 亮, 杜 磊, 庄奕琪, 李伟华, 陈建平. 金属互连电迁移噪声的多尺度熵复杂度分析.  , 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [12] 孙克辉, 谈国强, 盛利元. TD-ERCS离散混沌伪随机序列的复杂性分析.  , 2008, 57(6): 3359-3366. doi: 10.7498/aps.57.3359
    [13] 庄建军, 宁新宝, 邹 鸣, 孙 飙, 杨 希. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性.  , 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
    [14] 颜森林. 混沌信号在光纤传输过程中的非线性演化.  , 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [15] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵.  , 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [16] 刘成周, 赵 峥. Gibbons-Maeda dilaton 黑洞的纠缠熵.  , 2006, 55(4): 1607-1615. doi: 10.7498/aps.55.1607
    [17] 蒋继建, 李传安. Kerr黑洞的量子面积谱及微黑洞的最小质量.  , 2005, 54(8): 3958-3961. doi: 10.7498/aps.54.3958
    [18] 宋太平, 侯晨霞, 史旺林. Vaidya-Bonner黑洞的熵.  , 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [19] 李传安. 黑洞的普朗克绝对熵公式.  , 2001, 50(5): 986-989. doi: 10.7498/aps.50.986
    [20] 李传安. 黑洞的视界面公式.  , 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
计量
  • 文章访问数:  5176
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-07
  • 修回日期:  2020-10-05
  • 上网日期:  2021-01-24
  • 刊出日期:  2021-02-05

/

返回文章
返回
Baidu
map