-
在符号计算软件 Maple 的帮助下, 利用改进的投射法和变量分离法, 得到了(3+1)维 Burgers 系统的孤立波解. 根据得到的解, 构造出 Burgers 系统新颖的孤子结构, 研究了孤子的演化.
-
关键词:
- 改进的投射法 /
- (3+1)维 Burgers 系统 /
- 孤子结构 /
- 演化
With the help of the symbolic computation system Maple and the improved projective method and variable separation method, a new family of solitory wave solutions for (3+1)-dimensional Burgers system is derived. Based on the derived solution, some novel soliton structures and soliton evolvements are investigated.-
Keywords:
- improved projective method /
- (3+1)-dimensional Burgers system /
- soliton structures /
- evolvements
[1] Camassa R, Holm D D 1993 Phys. Rev. Lett. 71 1661
[2] Kivshar Y S, Melonmend B A 1989 Rev. Mod. Phys. 61 765
[3] Kadomtsev B B, Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[4] Davey A, Stewartson K 1974 Proc. Roy. Soc. 338 17
[5] Camassa R, Holm D D 1993 Phys. Rev. Lett. 71 1661
[6] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[7] Zhang J F, Huang W H, Zheng C L 2002 Acta. Phys. Sin. 51 2676(in Chinese) [张解放, 黄文华, 郑春龙 2002 51 2676]
[8] Zhang D J 2003 Chaos, Solitons and Fractals 18 31
[9] Zhang D J 2005 Chaos, Solitons and Fractals 23 1333
[10] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[11] Zhang S L, Lou S Y 2007 Commun. Theor. Phys. 48 385
[12] Lou S Y 1999 Science (in China) 42 537
[13] Zheng C L, Fang J P, Chen L Q 2005 Acta Phys. Sin. 54 1468(in Chinese) [郑春龙, 方建平, 陈立群 2005 54 1468]
[14] Lou S Y 1995 J. Phys. Math. Gen A 28 7227
[15] Ruan H Y, Lou S Y 1997 J. Math. Phys. 38 3123
[16] Ma Z Y, Zhu J M, Zheng C L 2004 Chin. Phys. 13 1382
[17] Zhang J F, Meng J P 2004 Commun. Theor. Phys. 41 655
[18] Lou S Y 1996 Commun. Theor. 26 487
[19] Huang L, Sun J A, Dou F Q, Duan WS, Liu X X 2007 Acta Phys. Sin. 56 0611(in Chinese) [黄磊, 孙建安, 豆福全, 段文山, 刘兴霞 2007 56 0611]
[20] Lou S Y 2000 Phys. Lett. A 277 94
[21] Tang X Y, Liang Z F 2006 Phys. Lett. A 351 398
[22] Ying J P, Lou S Y 2003 Chin. Phys. Lett. 20 1448
[23] Fang J P, Zheng C L, Zhu J M 2005 Commun. Theor. Phys. 44 203
[24] Ma S H, Wu X H, Fang J P, Zheng C L 2006 Z. Naturforsch. 61a 249
[25] Ma S H, Qiang J Y, Fang J P 2007 Acta Phys. Sin. 56 0620 (in Chinese)[马松华, 强继业, 方建平 2007 56 0620 ]
[26] Fang J P, Zheng C L 2005 Chin. Phys. 14 670
[27] Fang J P, Zheng C L, Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)[方建平, 郑春龙, 朱加民 2005 54 2990]
[28] Ma S H, Fang J P, Hong B H, Zheng C L 2009 Chaos, Solitons and Fractals 40 1352
[29] Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. B 17 2767
[30] Ma S H, Fang J P, Ren Q B 2010 Acta. Phys. Sin. 59 4420 (in Chinese) [马松华, 方建平, 任清褒 2010 59 4420]
[31] Yang Z, Ma S H, Fang J P 2011 Chin. Phys. B 20 040301
[32] Zhu H P, Zheng C L, Fang J P 2006 Commun. Theor. Phys. 45 127
[33] Dai C Q, Yan C J, Zhang J F 2006 Commun. Theor. Phys. 46 389
[34] Kong F L, Chen S D 2006 Chaos, Solitons and Fractals 27 495
-
[1] Camassa R, Holm D D 1993 Phys. Rev. Lett. 71 1661
[2] Kivshar Y S, Melonmend B A 1989 Rev. Mod. Phys. 61 765
[3] Kadomtsev B B, Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[4] Davey A, Stewartson K 1974 Proc. Roy. Soc. 338 17
[5] Camassa R, Holm D D 1993 Phys. Rev. Lett. 71 1661
[6] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[7] Zhang J F, Huang W H, Zheng C L 2002 Acta. Phys. Sin. 51 2676(in Chinese) [张解放, 黄文华, 郑春龙 2002 51 2676]
[8] Zhang D J 2003 Chaos, Solitons and Fractals 18 31
[9] Zhang D J 2005 Chaos, Solitons and Fractals 23 1333
[10] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[11] Zhang S L, Lou S Y 2007 Commun. Theor. Phys. 48 385
[12] Lou S Y 1999 Science (in China) 42 537
[13] Zheng C L, Fang J P, Chen L Q 2005 Acta Phys. Sin. 54 1468(in Chinese) [郑春龙, 方建平, 陈立群 2005 54 1468]
[14] Lou S Y 1995 J. Phys. Math. Gen A 28 7227
[15] Ruan H Y, Lou S Y 1997 J. Math. Phys. 38 3123
[16] Ma Z Y, Zhu J M, Zheng C L 2004 Chin. Phys. 13 1382
[17] Zhang J F, Meng J P 2004 Commun. Theor. Phys. 41 655
[18] Lou S Y 1996 Commun. Theor. 26 487
[19] Huang L, Sun J A, Dou F Q, Duan WS, Liu X X 2007 Acta Phys. Sin. 56 0611(in Chinese) [黄磊, 孙建安, 豆福全, 段文山, 刘兴霞 2007 56 0611]
[20] Lou S Y 2000 Phys. Lett. A 277 94
[21] Tang X Y, Liang Z F 2006 Phys. Lett. A 351 398
[22] Ying J P, Lou S Y 2003 Chin. Phys. Lett. 20 1448
[23] Fang J P, Zheng C L, Zhu J M 2005 Commun. Theor. Phys. 44 203
[24] Ma S H, Wu X H, Fang J P, Zheng C L 2006 Z. Naturforsch. 61a 249
[25] Ma S H, Qiang J Y, Fang J P 2007 Acta Phys. Sin. 56 0620 (in Chinese)[马松华, 强继业, 方建平 2007 56 0620 ]
[26] Fang J P, Zheng C L 2005 Chin. Phys. 14 670
[27] Fang J P, Zheng C L, Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)[方建平, 郑春龙, 朱加民 2005 54 2990]
[28] Ma S H, Fang J P, Hong B H, Zheng C L 2009 Chaos, Solitons and Fractals 40 1352
[29] Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. B 17 2767
[30] Ma S H, Fang J P, Ren Q B 2010 Acta. Phys. Sin. 59 4420 (in Chinese) [马松华, 方建平, 任清褒 2010 59 4420]
[31] Yang Z, Ma S H, Fang J P 2011 Chin. Phys. B 20 040301
[32] Zhu H P, Zheng C L, Fang J P 2006 Commun. Theor. Phys. 45 127
[33] Dai C Q, Yan C J, Zhang J F 2006 Commun. Theor. Phys. 46 389
[34] Kong F L, Chen S D 2006 Chaos, Solitons and Fractals 27 495
计量
- 文章访问数: 6914
- PDF下载量: 462
- 被引次数: 0