-
超声分子束注入加料技术是用于磁约束聚变等离子体燃料补充的方法之一. 为优化超声分子束注入束流特性, 提升超声分子束注入加料效率以及深入研究分子束与等离子体相互作用, 研制了用于超声分子束束流特性测试的诊断系统并开展了应用测试. 基于超声分子束注入束流具有透明、超高速等特点, 该诊断系统主要利用纹影法配合高速相机进行束流特性测量, 其中纹影系统设计为“Z”字型反射式. 该系统应用在超声分子束束流测试平台上, 测试了分子束束流基本特征. 为验证系统的有效性, 使用不同形状(圆孔及锥形一体式)喷嘴在大气和真空条件下开展了一系列测试, 分别获得了二氧化碳气体及氘气在不同条件下的束流轮廓. 该系统为超声分子束束流优化提供了直接测试手段.Supersonic molecular beam injection (SMBI) is an effective fueling method for the magnetic fusion plasmas. The fueling method was first proposed in the HL-1 tokamak, and now has been applied to several tokamaks and stellarators. Pulsed molecular beam passes from a Laval type nozzle and has a high instantaneous intensity, high directionality and deep deposition in the plasma. The fueling efficiency is higher than the gas puffing efficiency. In addition, it is widely used for controlling plasma density and investigating plasma physics. To further improve the fueling capability in future fusion devices, it is highly desirable to optimize the characteristic of the SMB and further investigate the interactions between the molecular beam and the plasma. In this paper, a schlieren diagnostic system is developed to measure the parameters of molecular beam, and the testing application is performed. The schlieren system, which is based on the schlieren photography, is designed with the zigzag optical path and equipped on the SMBI testing platform to measure the characteristics of the supersonic molecular beam. In order to verify the effectiveness of the system, a series of tests is carried out with different nozzle shapes under atmospheric and vacuum conditions. The beam profiles of CO2 and D2 under different background pressures are obtained. The testing results indicate that the directionality of the integrated Laval nozzle is much better than that of the pinhole nozzle. The schlieren system provides a testing tool for optimizing the supersonic molecular beam.
-
Keywords:
- supersonic molecular beam injection /
- schlieren system /
- nozzle /
- beam profile measurement
[1] Yao L H, Tang N Y, Cui Z Y, et al. 1998 Nucl. Fusion 38 631Google Scholar
[2] Yu D L, Chen C Y, Yao L H, et al. 2012 Nucl. Fusion 52 082001Google Scholar
[3] Zheng X W, Li J G, Hu J S, et al. 2013 Plasma Phys. Controlled. Fusion 55 115010Google Scholar
[4] Chen C Y, Yu D L, Feng B B, et al. 2016 Rev. Sci. Instrum. 87 093503Google Scholar
[5] Xiao W W, Zou X L, Ding X T, et al. 2010 Phys. Rev. Lett. 104 215001Google Scholar
[6] Sun H J, Ding X T, Yao L H, et al. 2010 Plasma Phys. Controlled Fusion 52 045003Google Scholar
[7] Duan X R, Dong J Q, Yan L W, et al. 2010 Nucl. Fusion 50 095011Google Scholar
[8] Zhong W L, Zou X L, Liang A S, et al. 2020 Nucl. Fusion 60 082002Google Scholar
[9] Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar
[10] Zhong W L, Zou X L, Feng B B, et al. 2019 Nucl. Fusion 59 076033Google Scholar
[11] Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013Google Scholar
[12] Huang D W, Chen Z Y, Tong R H, et al. 2017 Plasma Phys. Controlled Fusion 59 085002Google Scholar
[13] Baldzuhn J, Yao L H, W7-AS Team 2003 30th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia, July 7−11, 2003 p4.166pd
[14] Pégourié B, Tsitrone E, Dejarnac R, et al. 2003 J. Nucl. Mater. 313 539Google Scholar
[15] Kwak J G, Oh Y K, Yang H L, et al. 2013 Nucl. Fusion 53 104005Google Scholar
[16] Takenaga H, Miyo Y, Bucalossi J, et al. 2010 Nucl. Fusion 50 115003Google Scholar
[17] Xiao J S, Yang Z J, Zhuang G, et al. 2014 Plasma Sci. Technol. l 16Google Scholar
[18] 冯北滨, 肖国梁, 陈程远, 等 2019 CFETR集成工程设计年会暨聚变堆设计研讨会 中国黄山, 2019年 9月24日, 第1−53页
Feng B B, Xiao G L, Chen C Y, et al. 2019 Annual Meeting of CFETR Integrated Design & Fusion Reactor Design Workshop, Huangshan, China, September 24, 2019 pp1−53 (in Chinese)
[19] 冯北滨, 肖国梁, 陈程远, 等 2019年第一届中国磁约束聚变能大会暨聚变能活动周 中国乐山, 2019年11月25日 EX(P)-19
Feng B B, Xiao G L, Chen C Y, et al. 2019 1st Chinese Fusion Energy Conference, Leshan, China, November 25, 2019 EX(P)-19 (in Chinese)
[20] 塞特尔 G S著 (叶继飞, 文明, 徐徐等译) 2001 纹影与阴影技术 (北京: 国防工业出版社) 第25−28页
Settles G S (translated by Ye J F, Wen M, Xu X, et al.) 2001 Schlieren and Shadowgraph Techniques-Visualizing Phenomena in Transparent Media (Beijing: National Defense Industry Press) pp25−28 (in Chinese)
[21] 冯天植, 刘成民, 赵润祥, 等 1994 弹道学报 6 89
Feng T Z, Liu C M, Zhao R X, et al. 1994 J. Ballistics 6 89
[22] 叶继飞, 金燕, 吴文堂, 等 2011 实验流体力学 25 94Google Scholar
Ye J F, Jin Y, Wu W T, et al. 2011 J. Exp. Fluid Mech. 25 94Google Scholar
[23] Yao L H, Zhou Y, Cao J Y, et al. 2001 Nucl. Fusion 41 817Google Scholar
[24] 李华, 杨臧健, 吴敏, 等 2011 实验流体力学 25 91Google Scholar
Li H, Yang Z J, Wu M, et al. 2011 J. Exp. Fluid Mech. 25 91Google Scholar
-
表 1 主要系统元件参数
Table 1. Parameters of main components.
元件名称 详细参数 光源 彩色LED, 中心波长532 nm, 功率250 W
且连续可调, 带聚焦透镜及风冷狭缝 圆孔, 直径小于3 mm可调节, 边缘锐利
无毛刺球面反
射镜1,2有效通光口径ϕ150 mm, 焦距2.5 m, 边缘
厚度60 mm, 面型精度1/4波长小反射镜1,2 有效通光口径ϕ50 mm 平面转折镜 有效通光口径ϕ215 mm, 面型精度1/8波长 观察窗1,2 有效通光口径ϕ150 mm, 材质K9, 厚度20 mm 刀口 开启宽度5 mm, 步进精度0.01 mm 装调结构 中心高度1.1 m, 升降调节精度 ±100 mm -
[1] Yao L H, Tang N Y, Cui Z Y, et al. 1998 Nucl. Fusion 38 631Google Scholar
[2] Yu D L, Chen C Y, Yao L H, et al. 2012 Nucl. Fusion 52 082001Google Scholar
[3] Zheng X W, Li J G, Hu J S, et al. 2013 Plasma Phys. Controlled. Fusion 55 115010Google Scholar
[4] Chen C Y, Yu D L, Feng B B, et al. 2016 Rev. Sci. Instrum. 87 093503Google Scholar
[5] Xiao W W, Zou X L, Ding X T, et al. 2010 Phys. Rev. Lett. 104 215001Google Scholar
[6] Sun H J, Ding X T, Yao L H, et al. 2010 Plasma Phys. Controlled Fusion 52 045003Google Scholar
[7] Duan X R, Dong J Q, Yan L W, et al. 2010 Nucl. Fusion 50 095011Google Scholar
[8] Zhong W L, Zou X L, Liang A S, et al. 2020 Nucl. Fusion 60 082002Google Scholar
[9] Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar
[10] Zhong W L, Zou X L, Feng B B, et al. 2019 Nucl. Fusion 59 076033Google Scholar
[11] Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013Google Scholar
[12] Huang D W, Chen Z Y, Tong R H, et al. 2017 Plasma Phys. Controlled Fusion 59 085002Google Scholar
[13] Baldzuhn J, Yao L H, W7-AS Team 2003 30th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia, July 7−11, 2003 p4.166pd
[14] Pégourié B, Tsitrone E, Dejarnac R, et al. 2003 J. Nucl. Mater. 313 539Google Scholar
[15] Kwak J G, Oh Y K, Yang H L, et al. 2013 Nucl. Fusion 53 104005Google Scholar
[16] Takenaga H, Miyo Y, Bucalossi J, et al. 2010 Nucl. Fusion 50 115003Google Scholar
[17] Xiao J S, Yang Z J, Zhuang G, et al. 2014 Plasma Sci. Technol. l 16Google Scholar
[18] 冯北滨, 肖国梁, 陈程远, 等 2019 CFETR集成工程设计年会暨聚变堆设计研讨会 中国黄山, 2019年 9月24日, 第1−53页
Feng B B, Xiao G L, Chen C Y, et al. 2019 Annual Meeting of CFETR Integrated Design & Fusion Reactor Design Workshop, Huangshan, China, September 24, 2019 pp1−53 (in Chinese)
[19] 冯北滨, 肖国梁, 陈程远, 等 2019年第一届中国磁约束聚变能大会暨聚变能活动周 中国乐山, 2019年11月25日 EX(P)-19
Feng B B, Xiao G L, Chen C Y, et al. 2019 1st Chinese Fusion Energy Conference, Leshan, China, November 25, 2019 EX(P)-19 (in Chinese)
[20] 塞特尔 G S著 (叶继飞, 文明, 徐徐等译) 2001 纹影与阴影技术 (北京: 国防工业出版社) 第25−28页
Settles G S (translated by Ye J F, Wen M, Xu X, et al.) 2001 Schlieren and Shadowgraph Techniques-Visualizing Phenomena in Transparent Media (Beijing: National Defense Industry Press) pp25−28 (in Chinese)
[21] 冯天植, 刘成民, 赵润祥, 等 1994 弹道学报 6 89
Feng T Z, Liu C M, Zhao R X, et al. 1994 J. Ballistics 6 89
[22] 叶继飞, 金燕, 吴文堂, 等 2011 实验流体力学 25 94Google Scholar
Ye J F, Jin Y, Wu W T, et al. 2011 J. Exp. Fluid Mech. 25 94Google Scholar
[23] Yao L H, Zhou Y, Cao J Y, et al. 2001 Nucl. Fusion 41 817Google Scholar
[24] 李华, 杨臧健, 吴敏, 等 2011 实验流体力学 25 91Google Scholar
Li H, Yang Z J, Wu M, et al. 2011 J. Exp. Fluid Mech. 25 91Google Scholar
计量
- 文章访问数: 6590
- PDF下载量: 104
- 被引次数: 0