搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RecA蛋白介导同源重组的步进式链交换

黄星榞 隋明宇 侯文清 李明 陆颖 徐春华

引用本文:
Citation:

RecA蛋白介导同源重组的步进式链交换

黄星榞, 隋明宇, 侯文清, 李明, 陆颖, 徐春华

Stepwise strand exchange during RecA-induced homologous recombination

Huang Xing-Yuan, Sui Ming-Yu, Hou Wen-Qing, Li Ming, Lu Ying, Xu Chun-Hua
PDF
HTML
导出引用
  • 同源重组过程由重组酶介导, 对维持细胞的遗传稳定性有极大的作用. 链交换是同源重组的关键过程, 研究链交换发生的基本步长对理解整个反应机制有着重要的作用. RecA作为原核生物重组酶的重要成员, 近年来持续受到广泛关注, 但RecA介导的同源重组链交换的步长目前还有争议. 现在主流的观点认为链交换步长为3 bp, 而我们的前期工作测得步长的最可几值为9 bp. 为了进一步验证我们的结论, 进而为更深层次的机理研究提供基础, 本文采用酶切保护实验和单分子磁镊, 配合使用不同的错配碱基序列从侧面验证了链交换步长不为3 bp, 而更倾向于9 bp, 并分析了一个步长内的错配碱基数目和分布对链交换进程的影响. 该结论为进一步探索重组酶工作的分子机理提供了基础和新的思路.
    Homologous recombination (HR) which is important for maintaining the genetic stability of the cell is mainly mediated by recombinase. As a critical recombinase exists in prokaryotic organism, RecA has been widely studied. RecA could bind single strand DNA to form a filament structure to perform strand invasion and exchange with homologous DNA. The basic strand exchange step is a pathway to investigating the mechanism of strand exchange process. However, the specific step length is still controversial. The mainstream view is to regard the basic step as 3 bp, which sounds reasonable because the basic unit of RecA filament is a RecA monomer which binds 3 base pairs, but our previous study found that the most probable basic strand exchange step is 9 bp. In this research, we set up a series of experiments to demonstrate that the basic strand exchange step is 9 bp and how the mismatch base pairs in 9 bp affect the strand exchange process. We ues digestion protection to confirm whether the strand exchange process is completed and we employ a magnetic tweezer to measure how many base pairs are exchanged by strand exchange process. The digestion protection experiments show the strand exchange cannot overcome 33% mismatch sequence, but according to the result that strand exchange could overcome a single mismatch base pair, so that the step is not 3 bp. According to strand exchange length of 33% mismatch sequence, we find a 9 bp interval between the main peaks, which implies that the strand exchange step should be 9 bp rather than 3 bp. We also use continuous mismatch base pairs instead of periodic mismatch sequence to see whether the strand exchange process can be overcome. We find that the more the mismatch base pairs, the harder the strand exchange process passes across. Homology degree and its distribution both affect the strand exchange process. In general, the results suggest that the strand exchange step mediated by RecA is 9 bp, and the number of mismatched base pairs and their distribution influence the strand exchange process. The combination of digestion protection assay and magnetic tweezers can further take advantage of single molecule techniques to investigate mechanism of HR.
      通信作者: 徐春华, xch@iphy.ac.cn
      Corresponding author: Xu Chun-Hua, xch@iphy.ac.cn
    [1]

    Blaikley E J, Tinline-Purvis H, Kasparek T R, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee B Y, Deegan R S, Walker C A, Pai C C, Bahler J, Nakagawa T, Humphrey T C 2014 Nucleic Acids Res. 42 5644Google Scholar

    [2]

    Sakofsky C J, Malkova A 2017 Crit. Rev. Biochem. Mol. Biol. 52 395Google Scholar

    [3]

    Chen Z, Yang H, Pavletich N P 2008 Nature 453 489Google Scholar

    [4]

    Kim S H 2018 Methods Enzymol. 600 233Google Scholar

    [5]

    Lu C H, Li H W 2017 ChemPhysChem 18 584Google Scholar

    [6]

    Danilowicz C, Hermans L, Coljee V, Prevost C, Prentiss M 2017 Nucleic Acids Res. 45 8448Google Scholar

    [7]

    Ragunathan K, Joo C, Ha T 2011 Structure 19 1064Google Scholar

    [8]

    Lee J Y, Terakawa T, Qi Z, Steinfeld J B, Redding S, Kwon Y, Gaines W A, Zhao W, Sung P, Greene E C 2015 Science 349 977Google Scholar

    [9]

    Peacock V A, Yang D, Danilowicz C, Feinstein E, Pollock N, McShan S, Coljee V, Prentiss M 2012 Nucleic Acids Res. 40 10441Google Scholar

    [10]

    Danilowicz C, Feinstein E, Conover A, Coljee V W, Vlassakis J, Chan Y L, Bishop D K, Prentiss M 2012 Nucleic Acids Res. 40 1717Google Scholar

    [11]

    Jiang L L, Prentiss M 2014 Phys. Rev. E 90 022704

    [12]

    Prentiss M, Prevost C, Danilowicz C 2015 Crit. Rev. Biochem. Mol. Biol. 50 453Google Scholar

    [13]

    张宇微, 颜燕, 农大官, 徐春华, 李明 2016 65 218702Google Scholar

    Zhang Y W, Yan Y, Nong D G, Xu C H, Li M 2016 Acta Phys. Sin. 65 218702Google Scholar

    [14]

    Danilowicz C B, Coljee V, Bouzig C, Conroy R S, Lubensky D, Sarkar A, Nelson D R, Prentiss M 2003 Biophys. J. 84 301a

    [15]

    Winkleman A, Gudiksen K L, Ryan D, Whitesides G M, Greenfield D, Prentiss M 2004 Appl. Phys. Lett. 85 2411Google Scholar

    [16]

    Lipfert J, Hao X M, Dekker N H 2009 Biophys. J. 96 5040Google Scholar

    [17]

    马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华 2018 67 148702Google Scholar

    Ma J B, Zhai Y L, Nong D G, Li J H, Fu H, Zhang X H, Li M, Lu Y, Xu C H 2018 Acta Phys. Sin. 67 148702Google Scholar

    [18]

    Le S M, Yao M X, Chen J, Efremov A K, Azimi S, Yan J 2015 Nucleic Acids Res. 43 e113Google Scholar

    [19]

    Wang Y Z, Hou X M, Ju H P, Xiao X, Xi X G, Dou S X, Wang P Y, Li W 2018 Chin. Phys. B 27 068701Google Scholar

    [20]

    赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖 2017 66 188701Google Scholar

    Zhao Z Y, Xu C H, Li J H, Huang X Y, Ma J B, Lu Y 2017 Acta Phys. Sin. 66 188701Google Scholar

    [21]

    Lee J Y, Steinfeld J B, Qi Z, Kwon Y, Sung P, Greene E C 2017 J. Biol. Chem. 292 11125Google Scholar

    [22]

    Qi Z, Redding S, Lee J Y, Gibb B, Kwon Y, Niu H, Gaines W A, Sung P, Greene E C 2015 Cell 160 856Google Scholar

    [23]

    Ristic D, Kanaar R, Wyman C 2011 Nucleic Acids Res. 39 155Google Scholar

    [24]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [25]

    Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599Google Scholar

    [26]

    Vlassakis J, Feinstein E, Yang D, Tilloy A, Weiller D, Kates H J, Coljee V, Prentiss M 2013 Phys. Rev. E 87 012702

  • 图 1  全匹配酶切保护实验的示意图及酶切结果 (a) 包含错配序列的酶切保护实验示意图, 蓝色部分代表同源序列, 红色部分代表错配序列; (b) 在全匹配序列的情况下酶切保护实验示意图; (c) 酶切实验结果, 分别为全匹配序列和33%错配序列的酶切情况(误差线代表统计误差), 酶切时间为30 min

    Fig. 1.  The enzyme protection assay: (a) The diagram of the enzyme protection assay with mismatch sequence, blue strands represent homologous sequence and red strand represents mismatched sequence; (b) same as (a) when using completely homologous sequence; (c) the results of enzyme protection assay.

    图 2  用磁镊定量测量不同匹配程度序列下的换链长度 (a) 磁镊实验的示意图, 红色链代表错配序列, 蓝色链代表同源序列, 从左到右分别对应链交换反应发生之前, 全匹配序列的链交换反应, 和链交换被错配序列阻挡三种现象; (b) 全匹配序列下的换链曲线, 换链可以进行到末尾; (c) 后24个碱基为部分错配时的换链曲线, 红色为界面位置; (d) 33%错配时的换链长度, 红色实线代表界面位置, 红色虚线为界面前9 bp的位置

    Fig. 2.  Using magnetic tweezers to measure the strand exchange length under different periodic mismatch sequence: (a) From left to right are diagrams of experiments when strand exchange is not happened, strand exchange process under homologous sequence and periodic mismatch sequence, respectively. Red strands represent mismatch sequence and blue strands represent homologous sequence; (b) trace of fully homologous sequence; (c) trace of periodic mismatch sequence; (d) strand exchange length distributions of 33% periodic mismatch sequence, red line marks the interface and red-dashed line marks the position which is 9 bp before the interface.

    图 3  使用磁镊方法探究换链是否能够跨过连续错配碱基 (a) 磁镊实验的示意图, 红色线段位置为错配碱基序列, 蓝色线段为同源碱基序列, 从左到右分别是链交换反应之前, 链交换被错配碱基阻碍和链交换跨过错配序列三种现象; (b) 不同连续错配碱基数目时, 越过错配碱基事件数量的百分比(误差线代表统计误差); (c) 33%错配序列和连续3 bp错配序列的碱基位置分布, N为错配碱基数目, 红色代表错配碱基, 蓝色代表同源碱基; (d)同(c)一样, 用来表示N = 2, 4和5时的错配碱基分布

    Fig. 3.  Using magnetic tweezers to investigate if strand exchange could stride across continuous mismatch base pairs: (a) From left to right are diagrams of experiments when strand exchange is not happened, strand exchange process blocked by continuous mismatch base pairs and strand exchange process stride across continuous mismatch base pairs, respectively. Red segments represent mismatch base pairs and blue segments represent homologous base pairs; (b) across probability when facing different continuous sequence; (c) the mismatch base pairs distribution of 33% periodic mismatch sequence and 3 bp continuous mismatch sequence, N represents the number of mismatch base pairs; (d) same as (c) when N = 2, 4 and 5.

    Baidu
  • [1]

    Blaikley E J, Tinline-Purvis H, Kasparek T R, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee B Y, Deegan R S, Walker C A, Pai C C, Bahler J, Nakagawa T, Humphrey T C 2014 Nucleic Acids Res. 42 5644Google Scholar

    [2]

    Sakofsky C J, Malkova A 2017 Crit. Rev. Biochem. Mol. Biol. 52 395Google Scholar

    [3]

    Chen Z, Yang H, Pavletich N P 2008 Nature 453 489Google Scholar

    [4]

    Kim S H 2018 Methods Enzymol. 600 233Google Scholar

    [5]

    Lu C H, Li H W 2017 ChemPhysChem 18 584Google Scholar

    [6]

    Danilowicz C, Hermans L, Coljee V, Prevost C, Prentiss M 2017 Nucleic Acids Res. 45 8448Google Scholar

    [7]

    Ragunathan K, Joo C, Ha T 2011 Structure 19 1064Google Scholar

    [8]

    Lee J Y, Terakawa T, Qi Z, Steinfeld J B, Redding S, Kwon Y, Gaines W A, Zhao W, Sung P, Greene E C 2015 Science 349 977Google Scholar

    [9]

    Peacock V A, Yang D, Danilowicz C, Feinstein E, Pollock N, McShan S, Coljee V, Prentiss M 2012 Nucleic Acids Res. 40 10441Google Scholar

    [10]

    Danilowicz C, Feinstein E, Conover A, Coljee V W, Vlassakis J, Chan Y L, Bishop D K, Prentiss M 2012 Nucleic Acids Res. 40 1717Google Scholar

    [11]

    Jiang L L, Prentiss M 2014 Phys. Rev. E 90 022704

    [12]

    Prentiss M, Prevost C, Danilowicz C 2015 Crit. Rev. Biochem. Mol. Biol. 50 453Google Scholar

    [13]

    张宇微, 颜燕, 农大官, 徐春华, 李明 2016 65 218702Google Scholar

    Zhang Y W, Yan Y, Nong D G, Xu C H, Li M 2016 Acta Phys. Sin. 65 218702Google Scholar

    [14]

    Danilowicz C B, Coljee V, Bouzig C, Conroy R S, Lubensky D, Sarkar A, Nelson D R, Prentiss M 2003 Biophys. J. 84 301a

    [15]

    Winkleman A, Gudiksen K L, Ryan D, Whitesides G M, Greenfield D, Prentiss M 2004 Appl. Phys. Lett. 85 2411Google Scholar

    [16]

    Lipfert J, Hao X M, Dekker N H 2009 Biophys. J. 96 5040Google Scholar

    [17]

    马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华 2018 67 148702Google Scholar

    Ma J B, Zhai Y L, Nong D G, Li J H, Fu H, Zhang X H, Li M, Lu Y, Xu C H 2018 Acta Phys. Sin. 67 148702Google Scholar

    [18]

    Le S M, Yao M X, Chen J, Efremov A K, Azimi S, Yan J 2015 Nucleic Acids Res. 43 e113Google Scholar

    [19]

    Wang Y Z, Hou X M, Ju H P, Xiao X, Xi X G, Dou S X, Wang P Y, Li W 2018 Chin. Phys. B 27 068701Google Scholar

    [20]

    赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖 2017 66 188701Google Scholar

    Zhao Z Y, Xu C H, Li J H, Huang X Y, Ma J B, Lu Y 2017 Acta Phys. Sin. 66 188701Google Scholar

    [21]

    Lee J Y, Steinfeld J B, Qi Z, Kwon Y, Sung P, Greene E C 2017 J. Biol. Chem. 292 11125Google Scholar

    [22]

    Qi Z, Redding S, Lee J Y, Gibb B, Kwon Y, Niu H, Gaines W A, Sung P, Greene E C 2015 Cell 160 856Google Scholar

    [23]

    Ristic D, Kanaar R, Wyman C 2011 Nucleic Acids Res. 39 155Google Scholar

    [24]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [25]

    Bustamante C, Marko J F, Siggia E D, Smith S 1994 Science 265 1599Google Scholar

    [26]

    Vlassakis J, Feinstein E, Yang D, Tilloy A, Weiller D, Kates H J, Coljee V, Prentiss M 2013 Phys. Rev. E 87 012702

  • [1] 韩旭, 薛斌, 曹毅, 王炜. 自组装生物分子软物质材料及其物理特性.  , 2024, 73(17): 178103. doi: 10.7498/aps.73.20240947
    [2] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [3] 纪婷伟, 白刚. 双轴错配应变对铁电双栅负电容晶体管性能的影响.  , 2023, 72(6): 067701. doi: 10.7498/aps.72.20222190
    [4] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [5] 太赫兹生物物理专题编者按.  , 2021, 70(24): 240101. doi: 10.7498/aps.70.240101
    [6] 司铁岩, 袁军华, 吴艺林, 唐建新. 细菌运动中的物理生物学.  , 2016, 65(17): 178703. doi: 10.7498/aps.65.178703
    [7] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究.  , 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [8] 张宇微, 颜燕, 农大官, 徐春华, 李明. 磁镊结合DNA发夹的方法在RecA蛋白介导的同源重组机制研究中的潜在应用.  , 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [9] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用.  , 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [10] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质.  , 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [11] 张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究.  , 2013, 62(10): 107102. doi: 10.7498/aps.62.107102
    [12] 庞哲, 王爽, 李辉, 徐春华, 李明. 用荧光显微示踪方法研究RecA在DNA同源识别过程中的工作机理.  , 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [13] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [14] 马松山, 朱佳, 徐慧, 郭锐. 碱基对组分、电极位能及界面耦合对DNA分子I-V特性的影响.  , 2010, 59(10): 7458-7462. doi: 10.7498/aps.59.7458
    [15] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配.  , 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [16] 朱弢, 王崇愚, 干勇. 镍基单晶高温合金相界面错配位错网络的演化.  , 2009, 58(13): 156-S160. doi: 10.7498/aps.58.156
    [17] 易 鸣, 贾 亚, 刘 泉, 詹 璇. 生物钟基因网络中分子噪声诱导的日夜节律振荡及相干共振.  , 2008, 57(1): 621-627. doi: 10.7498/aps.57.621
    [18] 徐 慧, 郭爱敏, 马松山. 碱基序列对DNA分子电子结构的影响.  , 2007, 56(2): 1208-1213. doi: 10.7498/aps.56.1208
    [19] 彭双艳, 黄 涛, 王晓波, 邵军虎, 肖连团, 贾锁堂. 基于光子统计测量的单分子判别.  , 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
    [20] 刘福绥, 倪嘉陵. 色散扩散控制的单分子和双分子过程.  , 1982, 31(6): 764-771. doi: 10.7498/aps.31.764
计量
  • 文章访问数:  7698
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 修回日期:  2020-06-29
  • 上网日期:  2020-10-26
  • 刊出日期:  2020-10-20

/

返回文章
返回
Baidu
map