搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱基对组分、电极位能及界面耦合对DNA分子I-V特性的影响

马松山 朱佳 徐慧 郭锐

引用本文:
Citation:

碱基对组分、电极位能及界面耦合对DNA分子I-V特性的影响

马松山, 朱佳, 徐慧, 郭锐

Base pairs composition, on-site energies of electrode and DNA-metal coupling effects on current-voltage characteristic of DNA molecule

Ma Song-Shan, Zhu Jia, Xu Hui, Guo Rui
PDF
导出引用
  • 在紧束缚近似下,利用传输矩阵方法,计算研究了碱基对组分、金属电极位能及DNA分子与电极耦合强度对DNA分子I-V特征的影响.计算结果表明:由单一碱基对构成的DNA分子的饱和电流强度远大于由两种碱基对按一定组分随机分布的DNA分子的饱和电流强度,且当DNA分子中两种碱基对的含量相等时,其饱和电流强度最小.同时,富含C-G碱基对的DNA分子比富含A-T碱基对的DNA分子的电子输运能力大.金属电极位能对DNA分子电子输运的影响体现在两方面,当偏压较小时,电极位能具有阻碍电荷注入的效果,当偏压较大时
    Based on a tight-binding approximation and transfer matrix method, we investigated the effects of the composition of nucleotide base pairs, on-site energies of the electrode and DNA-metal coupling strength on the current-voltage characteristic. The results indicate that the saturation current of DNA molecule which is composed of one single kind of nucleotide base pair is much higher than that composed of two kinds of nucleotide base pair. Meanwhile, the DNA molecule which is rich in G-C base pairs has higher electronic transport ability. When the bias is low, the on-site energies of the electrode have the effect of impeding charge injection. On the other hand, when the bias is high, the on-site energies of the electrode have the effect of enhancing charge injection. In addition, we can find that a stronger DNA-metal coupling does not always result in a larger saturation current. When tdm=td, there is a resonance injection, which is optimized for electron transport. When tdm departs from td, the resonance injection is reduced, which lead to the stronger of DNA-metal coupling at the range of tdm>td and the lower of saturation current of DNA.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号:20070533075)和湖南省科技计划(批准号:2009FJ3004)资助的课题.
    [1]

    Joachim C, Gimzewski J K, Aviram A 2000 Nature 408 541

    [2]

    Weiss P S, Bumm L A, Dunbar T D, Burgin T P, Tour J M, Allara D L 1998 Molecular Electronics: Science and Technology (New York: New York Academy of Sciences) p14

    [3]

    Chen J, Wang W, Klemic J, Reed M A, Axelrod B W, Kaschak D M 2002 Molecular Electronics Ⅱ(New York: New York Academy of Sciences) p69

    [4]

    Deng X Q, Zhang Z H 2010 Acta Phys. Sin. 59 2714 (in Chinese) [邓小青、张振华 2010 59 2714]

    [5]

    Chen L N, Ma S S, Ouyang F P, Wu X Z, Xiao J, Xu H 2010 Chin. Phys. B 19 097301

    [6]

    Li Z L, Li H Z, Ma Y, Zhang G P, Wang C K 2010 Chin. Phys. B 19 067305

    [7]

    Huo X X, Wang C,Zhang X M, Wang L G 2010 Acta Phys. Sin. 59 4955 (in Chinese) [霍新霞、王 畅、张秀梅、王利光 2010 59 4955]

    [8]

    Mauro D E, Hollenberg C P 1993 Adv. Mat. 5 384

    [9]

    Niemeyer C M 2001 Angew. Chem. Int. Ed. 40 4128

    [10]

    Bean L T, Yan H, Kopatsch J, Liu F, Winfree E, Reif J H, Seeman N C 2000 J. Am. Chem. Soc. 122 1848

    [11]

    Seeman N C 2001 Nano Lett. 1 22

    [12]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775

    [13]

    Zhang Y, Austin R H, Kraeft J, Cox E C, Ong N P 2002 Phys. Rev. Lett. 89 198102

    [14]

    de Pablo P J, Moreno-Herrero F, Colchero J 2000 Phys. Rev. Lett. 85 4992

    [15]

    Porath D, Bezryadin A, de Vries S, Dekker C 2000 Nature 403 635

    [16]

    Li K, Dong R X, Ban G, Han H W, Su W, Yan X L 2009 Acta Phys. Sin. 58 6477 (in Chinese) [李 珂、董瑞新、班 戈、韩洪文、苏 伟、闫循领 2009 58 6477]

    [17]

    Fink H W, Schonenberger C 1999 Nature 398 407

    [18]

    Kasumov A Y, Kociak M, Gueron S, Reulet B, Volkov V T, Klinov D V, Bouchiat H 2001 Science 291 280

    [19]

    Myeong H L, Sankey O F 2009 Phys. Rev. E 79 051911

    [20]

    Mallajosyula S S, Lin J C, Cox D L, Pati S K, Singh R R P 2008 Phys. Rev. Lett. 101 176805

    [21]

    Liu T, Wang Y, Wang K L 2007 Chin. Phys. 16 272

    [22]

    Guo A M, Xiong S J, Yang Z, Zhu H J 2008 Phys. Rev. E 78 061922

    [23]

    Benjanim B, Schmidt, Matthias H H, Gerd S 2007 Phys. Rev. B 75 115125

    [24]

    Meng X L, Gao X T, Qu Z, Kang D W, Liu D S, Xie S J 2008 Acta Phys. Sin. 57 5316 (in Chinese) [孟宪兰、高绪团、渠 朕、康大伟、刘德胜、解士杰 2008 57 5316]

    [25]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

    [26]

    Malyshev A V 2007 Phys. Rev. Lett. 98 096801

    [27]

    Stephan R 2003 Phys. Rev. Lett. 91 108101

    [28]

    Gianaurelio C, Luis C, Danny P, Dekker C 2002 Phys. Rev. B 65 241314

  • [1]

    Joachim C, Gimzewski J K, Aviram A 2000 Nature 408 541

    [2]

    Weiss P S, Bumm L A, Dunbar T D, Burgin T P, Tour J M, Allara D L 1998 Molecular Electronics: Science and Technology (New York: New York Academy of Sciences) p14

    [3]

    Chen J, Wang W, Klemic J, Reed M A, Axelrod B W, Kaschak D M 2002 Molecular Electronics Ⅱ(New York: New York Academy of Sciences) p69

    [4]

    Deng X Q, Zhang Z H 2010 Acta Phys. Sin. 59 2714 (in Chinese) [邓小青、张振华 2010 59 2714]

    [5]

    Chen L N, Ma S S, Ouyang F P, Wu X Z, Xiao J, Xu H 2010 Chin. Phys. B 19 097301

    [6]

    Li Z L, Li H Z, Ma Y, Zhang G P, Wang C K 2010 Chin. Phys. B 19 067305

    [7]

    Huo X X, Wang C,Zhang X M, Wang L G 2010 Acta Phys. Sin. 59 4955 (in Chinese) [霍新霞、王 畅、张秀梅、王利光 2010 59 4955]

    [8]

    Mauro D E, Hollenberg C P 1993 Adv. Mat. 5 384

    [9]

    Niemeyer C M 2001 Angew. Chem. Int. Ed. 40 4128

    [10]

    Bean L T, Yan H, Kopatsch J, Liu F, Winfree E, Reif J H, Seeman N C 2000 J. Am. Chem. Soc. 122 1848

    [11]

    Seeman N C 2001 Nano Lett. 1 22

    [12]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775

    [13]

    Zhang Y, Austin R H, Kraeft J, Cox E C, Ong N P 2002 Phys. Rev. Lett. 89 198102

    [14]

    de Pablo P J, Moreno-Herrero F, Colchero J 2000 Phys. Rev. Lett. 85 4992

    [15]

    Porath D, Bezryadin A, de Vries S, Dekker C 2000 Nature 403 635

    [16]

    Li K, Dong R X, Ban G, Han H W, Su W, Yan X L 2009 Acta Phys. Sin. 58 6477 (in Chinese) [李 珂、董瑞新、班 戈、韩洪文、苏 伟、闫循领 2009 58 6477]

    [17]

    Fink H W, Schonenberger C 1999 Nature 398 407

    [18]

    Kasumov A Y, Kociak M, Gueron S, Reulet B, Volkov V T, Klinov D V, Bouchiat H 2001 Science 291 280

    [19]

    Myeong H L, Sankey O F 2009 Phys. Rev. E 79 051911

    [20]

    Mallajosyula S S, Lin J C, Cox D L, Pati S K, Singh R R P 2008 Phys. Rev. Lett. 101 176805

    [21]

    Liu T, Wang Y, Wang K L 2007 Chin. Phys. 16 272

    [22]

    Guo A M, Xiong S J, Yang Z, Zhu H J 2008 Phys. Rev. E 78 061922

    [23]

    Benjanim B, Schmidt, Matthias H H, Gerd S 2007 Phys. Rev. B 75 115125

    [24]

    Meng X L, Gao X T, Qu Z, Kang D W, Liu D S, Xie S J 2008 Acta Phys. Sin. 57 5316 (in Chinese) [孟宪兰、高绪团、渠 朕、康大伟、刘德胜、解士杰 2008 57 5316]

    [25]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

    [26]

    Malyshev A V 2007 Phys. Rev. Lett. 98 096801

    [27]

    Stephan R 2003 Phys. Rev. Lett. 91 108101

    [28]

    Gianaurelio C, Luis C, Danny P, Dekker C 2002 Phys. Rev. B 65 241314

  • [1] 王震, 赵志航, 付洋洋. 基于统一流体模型的微放电数值仿真研究.  , 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [2] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理.  , 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 郑建东, 周江, 皮晓丽, 邹晨, 李一帆, 徐坤博, 龚自正, 胡帼杰. 空间碎片超高速撞击下太阳电池阵伏安特性.  , 2021, 70(18): 188801. doi: 10.7498/aps.70.20210458
    [5] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华. 基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性.  , 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [6] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究.  , 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [7] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 肖特基势垒对CdS/CdTe薄膜电池J-V暗性能的影响.  , 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [8] 王炜, 张琪昌, 靳刚. 非对称截面Kirchhoff弹性细杆模型简化方法研究.  , 2012, 61(6): 064602. doi: 10.7498/aps.61.064602
    [9] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究.  , 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [10] 张燕, 顾彪, 王文春, 彭许文, 王德真. 常压He气和N2气均匀介质阻挡放电的伏安特性.  , 2009, 58(8): 5532-5538. doi: 10.7498/aps.58.5532
    [11] 孟宪兰, 高绪团, 渠 朕, 康大伟, 刘德胜, 解士杰. 界面耦合对DNA分子电荷输运性质的影响.  , 2008, 57(8): 5316-5322. doi: 10.7498/aps.57.5316
    [12] 徐 慧, 郭爱敏, 马松山. 碱基序列对DNA分子电子结构的影响.  , 2007, 56(2): 1208-1213. doi: 10.7498/aps.56.1208
    [13] 高绪团, 傅 雪, 宋 骏, 刘德胜, 解士杰. 位置涨落对DNA分子电子结构的影响.  , 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [14] 马松山, 徐 慧, 刘小良, 郭爱敏. DNA分子链电子结构特性研究.  , 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [15] 马 勇, 邹 斌, 李宗良, 王传奎, 罗 毅. 六元杂环分子电学特性的理论研究.  , 2006, 55(4): 1974-1978. doi: 10.7498/aps.55.1974
    [16] 邹 斌, 李宗良, 王传奎, 薛其坤. 电极距离对分子器件电输运特性的影响.  , 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [17] 刘玉颖, 窦硕星, 王鹏业, 谢 平, 王渭池. 应用分子梳技术对DNA与组蛋白相互作用的研究.  , 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [18] 李宗良, 王传奎, 罗毅, 薛其坤. 电极维度对单分子器件伏-安特性的影响.  , 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [19] 董瑞新, 闫循领, 庞小峰, 刘盛纲. 盐对DNA相变影响的非线性特性研究.  , 2003, 52(12): 3197-3202. doi: 10.7498/aps.52.3197
    [20] 沈学礎, 陈宁锵. 流体静压力对锗隧道二极管伏安特性的影响.  , 1964, 20(10): 1019-1026. doi: 10.7498/aps.20.1019
计量
  • 文章访问数:  8779
  • PDF下载量:  703
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-31
  • 修回日期:  2010-05-04
  • 刊出日期:  2010-05-05

/

返回文章
返回
Baidu
map