搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋发光二极管研究进展

梁世恒 陆沅 韩秀峰

引用本文:
Citation:

自旋发光二极管研究进展

梁世恒, 陆沅, 韩秀峰

Research progress of spin light emitting diode

Liang Shi-Heng, Lu Yuan, Han Xiu-Feng
PDF
HTML
导出引用
  • 半导体自旋电子学是凝聚态物理研究中重要的研究领域之一, 在20多年的发展历程中交叉了多学科领域, 其中结合了磁性材料和半导体材料复合结构而开展的关于自旋注入、操纵及光学探测研究的自旋发光二极管展现出丰富的物理性质. 自旋发光二极管的研究涉及自旋注入端和激活区的材料、结构和物理. 本文将从自旋注入、自旋输运和自旋探测三个方面概述自旋发光二极管中所涉及的自旋相关物理, 并进一步介绍自旋发光二极管的研究历程及其最新结果进展, 最后进一步对未来研究趋势进行展望.
    After more than 20 years of development, semiconductor spintronics has become an important and interdisciplinary research filed of spin-based physics, materials and phenomenon. Spin light emitting diode (spin LED) is one of the fascinating topics in semiconductor spintronic, and it is also one of devices in which the radiative recombination of spin-polarized carriers results in luminescence exhibiting a net circular polarization. The research of spin LED involves the studies of materials, structures, and spin based physics in spin injector and active region. The spin injection, spin transport, and spin detection are key factors for understanding the spin based physics in spin LED. Here in this paper, we comprehensively review the current research status and the latest results. Finally, we also discuss the future research trend.
      通信作者: 陆沅, yuan.lu@univ-lorraine.fr ; 韩秀峰, xfhan@iphy.ac.cn
    • 基金项目: 国家重研发计划(纳米计划)(批准号: 2017YFA0206200)、国家自然科学基金重点项目(批准号: 51831012)、国家自然科学基金中法重点国际合作项目(批准号: 51620105004)、中科院战略先导项目(B类) (批准号: XDB33000000)、中科院前沿科学重点研究计划(批准号: QYZDJ-SSW-SLH016)、北京市自然科学基金(批准号: Z201100004220006)和法国科研署(ANR)与国家自然科学基金SISTER合作项目(批准号: ANR-11-IS10-0001, NNSFC 61161130527)资助的课题
      Corresponding author: Lu Yuan, yuan.lu@univ-lorraine.fr ; Han Xiu-Feng, xfhan@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206200), the Key Program of the National Natural Science Foundation of China (Grant No. 51831012), the Key Joint Program of China-France of the National Natural Science Foundation (Grant No. 51620105004), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33000000), the Key Research Program of Frontier Sciences and the International Partnership Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH016), the Beijing Natural Science Foundation of China (Grant No. Z201100004220006), and the Joint ANR-NSFC SISTER Project (Grant Nos. ANR-11-IS10-0001, NNSFC61161130527)
    [1]

    Holub M, Bhattacharya P 2007 J. Phys. D: Appl. Phys. 40 R179Google Scholar

    [2]

    Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T 2011 Appl. Phys. Lett. 98 162508Google Scholar

    [3]

    Asshoff P, Merz A, Kalt H, Hetterich M 2011 Appl. Phys. Lett. 98 112106Google Scholar

    [4]

    Kim D Y 2006 J. Korean Phys. Soc. 49 S505

    [5]

    Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787Google Scholar

    [6]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [7]

    Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65Google Scholar

    [8]

    Lu Y, Truong V G, Renucci P, Tran M, Jaffrès H, Deranlot C, George J M, Lemaître A, Zheng Y, Demaille D, Binh P H, Amand T, Marie X 2008 Appl. Phys. Lett. 93 152102Google Scholar

    [9]

    Rashba E I 2000 Phys. Rev. B 62 R16267Google Scholar

    [10]

    Elliott R J 1954 Phys. Rev. 96 266Google Scholar

    [11]

    Zhao F 2010 Ph. D Thesis (France: University of Toulouse)

    [12]

    Soldat H, Li M, Gerhardt N C, Hofmann M R, Ludwig A, Ebbing A, Reuter D, Wieck A D, Stromberg F, Keune W, Wende H 2011 Appl. Phys. Lett. 99 051102Google Scholar

    [13]

    Saikin S, Shen M, Cheng M C 2006 J. Phys. Condens. Matter 18 1535Google Scholar

    [14]

    Young D K, Johnston-Halperin E, Awschalom D D, Ohno Y, Ohno H 2002 Appl. Phys. Lett. 80 1598Google Scholar

    [15]

    Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R, Harris J S, Parkin S S P 2005 Phys. Rev. Lett. 94 056601Google Scholar

    [16]

    Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H P, Ploog K H 2001 Phys. Rev. Lett. 87 016601Google Scholar

    [17]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [18]

    Barate P, Liang S, Zhang T T, Frougier J, Vidal M, Renucci P, Devaux X, Xu B, Jaffrès H, George J M, Marie X, Hehn M, Mangin S, Zheng Y, Amand T, Tao B, Han X F, Wang Z, Lu Y 2014 Appl. Phys. Lett. 105 012404Google Scholar

    [19]

    Hanbicki A T, Jonker B T, Itskos G, Kioseoglou G, Petrou A 2002 Appl. Phys. Lett. 80 1240Google Scholar

    [20]

    Motsnyi V F, De Boeck J, Das J, Van Roy W, Borghs G, Goovaerts E, Safarov V I 2002 Appl. Phys. Lett. 81 265Google Scholar

    [21]

    Lombez L, Braun P F, Renucci P, Gallo P, Carrère H, Binh P H, Marie X, Amand T, Gauffier J L, Urbaszek B, Arnoult A, Fontaine C, Deranlot C, Mattana R, Jaffrès H 2007 Phys. Status Solidi C 4 567Google Scholar

    [22]

    Wu H, Zheng H, Liu J, Li G, Xu P, Zhu H, Zhang H, Zhao J 2010 Sci. China Phys. Mech. 53 649Google Scholar

    [23]

    Barate P, Liang S H, Zhang T T, Frougier J, Xu B, Schieffer P, Vidal M, Jaffrès H, Lépine B, Tricot S, Cadiz F, Garandel T, George J M, Amand T, Devaux X, Hehn M, Mangin S, Tao B, Han X F, Wang Z G, Marie X, Lu Y, Renucci P 2017 Phys. Rev. Appl. 8 054027Google Scholar

    [24]

    Gerhardt N C, Hövel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502Google Scholar

    [25]

    Adelmann C, Hilton J L, Schultz B D, McKernan S, Palmstrøm C J, Lou X, Chiang H S, Crowell P A 2006 Appl. Phys. Lett. 89 112511Google Scholar

    [26]

    Hövel S, Gerhardt N C, Hofmann M R, Lo F Y, Ludwig A, Reuter D, Wieck A D, Schuster E, Wende H, Keune W, Petracic O, Westerholt K 2008 Appl. Phys. Lett. 93 021117Google Scholar

    [27]

    Grenet L, Jamet M, Noé P, Calvo V, Hartmann J M, Nistor L E, Rodmacq B, Auffret S, Warin P, Samson Y 2009 Appl. Phys. Lett. 94 032502Google Scholar

    [28]

    Zarpellon J, Jaffrès H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaître A, Freimuth F, Duong Q H, Renucci P, Marie X 2012 Phys. Rev. B 86 205314Google Scholar

    [29]

    Liang S H, Zhang T T, Barate P, Frougier J, Vidal M, Renucci P, Xu B, Jaffrès H, George J M, Devaux X, Hehn M, Marie X, Mangin S, Yang H X, Hallal A, Chshiev M, Amand T, Liu H F, Liu D P, Han X F, Wang Z G, Lu Y 2014 Phys. Rev. B 90 085310Google Scholar

    [30]

    Tao B S, Barate P, Frougier J, Renucci P, Xu B, Djeffal A, Jaffrès H, George J M, Marie X, Petit-Watelot S, Mangin S, Han X F, Wang Z G, Lu Y 2016 Appl. Phys. Lett. 108 152404Google Scholar

    [31]

    Tao B, Barate P, Devaux X, Renucci P, Frougier J, Djeffal A, Liang S, Xu B, Hehn M, Jaffrès H, George J M, Marie X, Mangin S, Han X, Wang Z, Lu Y 2018 Nanoscale 10 10213Google Scholar

    [32]

    Cadiz F, Djeffal A, Lagarde D, Balocchi A, Tao B, Xu B, Liang S, Stoffel M, Devaux X, Jaffres H, George J M, Hehn M, Mangin S, Carrere H, Marie X, Amand T, Han X, Wang Z, Urbaszek B, Lu Y, Renucci P 2018 Nano Lett. 18 2381Google Scholar

    [33]

    Kyrychenko F V, Stanton C J, Abernathy C R, Pearton S J, Ren F, Thaler G, Frazier R, Buyanova I, Bergman J P, Chen W M 2005 AIP Conf. Proc. 772 1319Google Scholar

    [34]

    Beschoten B, Johnston-Halperin E, Young D K, Poggio M, Grimaldi J E, Keller S, DenBaars S P, Mishra U K, Hu E L, Awschalom D D 2001 Phys. Rev. B 63 121202Google Scholar

    [35]

    Krishnamurthy S, van Schilfgaarde M, Newman N 2003 Appl. Phys. Lett. 83 1761Google Scholar

    [36]

    Buyanova I A, Izadifard M, Chen W M, Kim J, Ren F, Thaler G, Abernathy C R, Pearton S J, Pan C C, Chen G T, Chyi J I, Zavada J M 2005 AIP Conf. Proc. 772 1399Google Scholar

    [37]

    Ham M H, Yoon S, Park Y, Bian L, Ramsteiner M, Myoung J M 2006 J. Phys. Condens. Matter 18 7703Google Scholar

    [38]

    Banerjee D, Adari R, Sankaranarayan S, Kumar A, Ganguly S, Aldhaheri R W, Hussain M A, Balamesh A S, Saha D 2013 Appl. Phys. Lett. 103 242408Google Scholar

    [39]

    Chen J Y, Ho C Y, Lu M L, Chu L J, Chen K C, Chu S W, Chen W, Mou C Y, Chen Y F 2014 Nano Lett. 14 3130Google Scholar

    [40]

    Bhattacharya A, Baten Z, Frost T, Bhattacharya P 2017 IEEE Photon. Technol. Lett. 29 338Google Scholar

    [41]

    Bhattacharya A, Baten M Z, Iorsh I, Frost T, Kavokin A, Bhattacharya P 2017 Phys. Rev. Lett. 119 067701Google Scholar

    [42]

    Chen J Y, Wong T M, Chang C W, Dong C Y, Chen Y F 2014 Nat. Nanotechnol. 9 845Google Scholar

    [43]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [44]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

  • 图 1  Spin LED能带结构示意图[7]

    Fig. 1.  Schematic of band diagram of spin LED[7]

    图 2  自旋发光二极管的电致发光中偏振光测量系统原理示意图

    Fig. 2.  Schematic diagram of electroluminescence measurement system for spin LED

    图 3  Spin LED中时间分辨光致发光系统原理示意图

    Fig. 3.  Schematic diagram of time-resolved photoluminescence system

    图 4  (a) EY和(b) DP自旋弛豫机制示意图[11]

    Fig. 4.  Spin relaxation by scattering in (a) EY and (b) DP mechanisms[11].

    图 5  圆偏振光极化率随自旋注入层到有源发光区之间长度关系[12]

    Fig. 5.  Calculated circular polarization for fully perpendicular magnetization in remanence over injection path length[12].

    图 6  在闪锌矿GaAs直接带隙能带中的光选择定则 (a)体材料及(b)量子阱中的电子空穴复合选择定则. 上边蓝色球代表电子, 下边的红色球代表空穴, 箭头代表自旋方向. 其中CB代表导带, HH代表重空穴带, LH代表轻空穴带, HH是三重简并态, LH是单态. $ {\mathrm{\sigma }}^{-} $$ {\mathrm{\sigma }}^{+} $分别代表左旋光与右旋光. 在量子阱结构中由于晶格应变和结构限制, 电子与LH态空穴的复合几率被大大抑制[1]

    Fig. 6.  Electric dipole allowed radiative inter-band transitions and corresponding optical polarization for the cases of (a) bulk material with degenerate heavy- and light-hole bands and (b) a quantum well in which epitaxial strain and quantum confinement have lifted the heavy- and light-hole band degeneracy[1].

    图 7  GaAs量子阱自旋发光二极管中 (a)温度依赖的PC特性和(b)温度依赖的τs, τF因子特性[8]

    Fig. 7.  (a) Temperature dependence of PC, (b) temperature dependence of τs, τ, and the F factor in GaAs quantum well spin LED[8].

    图 8  自旋发光二极管的Faraday测试方法示意图[1]

    Fig. 8.  Schematic representation of a spin LED under the Faraday geometries[1].

    图 9  Gerhardt等[24]利用具有垂直磁各向异性的FeTb作为自旋注入端的自旋发光二极管 (a)结构示意图; (b)电致发光与磁场的关系, 他们在未加磁场剩余磁态下, 在90 K下得到了0.7%的圆偏振光极化率

    Fig. 9.  Schematic Spin LED device structure of the LED with Tb/Fe multilayer (a) reported by Gerhardt et al.[24], Circular polarization as a function of the applied magnetic field at 90 K (b), they observed PC of 0.7%

    图 10  (a) 基于垂直磁各向异性Ta/CoFeB/MgO为自旋注入端的自旋发光二极管结构示意图, 虚线选定区对应的TEM照片, 其中插图为缩小后的TEM照片; (b)温度依赖的圆偏振极化率及注入电子极化率; (c)温度依赖的F因子及载流子寿命$ \tau $、电子自旋弛豫时间$ {\tau }_{\mathrm{s}} $

    Fig. 10.  (a) Schematic device structure of Spin LED and HR-TEM image of CoFeB/MgO PMA injector; (b) temperature dependence of PC without magnetic field and with 0.4 T field. Temperature dependence of PE is calculated by PE = PC/F from the data without field; (c) temperature dependence of τS, τ, and F factor deduced from the TRPL measurements

    图 11  退火400 °C后, 具有垂直磁各向异性的Ta/CoFeB/MgO (a)和Mo/CoFeB/MgO (b)自旋注入端中由HR-STEM-EELS测量的空间元素分布[31]

    Fig. 11.  Chemical characterization of spin-injectors annealed at 400 °C. Dark field HR-STEM images and corresponding EELS mappings and profiles for (a) Ta and (b) Mo injectors annealed at 400 °C[31].

    图 12  (a), (b)基于垂直各向异性的Ta/CoFeB/MgO作为自旋注入端InGaAs/GaAs量子点spin LED 的TEM及其结构示意图; (c) InGaAs/GaAs量子点AFM图; (d)零磁场下9 K观测到了约35%电致发光圆偏振光极化率[32]

    Fig. 12.  Spin LED device with p-doped InAs/GaAs quantum dots and polarization resolved electroluminescence of an ensemble of quantum dots: (a) High resolution-transmission electron microscope image of the injector Ta/CoFeB/MgO/GaAs; (b) schematic structure of the spin LED device. A single layer of InAs QDs is embedded in the intrinsic region of the p-i-n junction of the LED; (c) AFM image of InAs QDs; (d) strongly polarized single dot emission at zero applied field[32].

    图 13  基于(Ga, Mn)As自旋注入端、MoS2/WeS2有源区的自旋发光二极管结构示意图[43]

    Fig. 13.  Schematic of the monolayer TMDC/(Ga, Mn)As heterojunction for electrical valley polarization devices. (Ga, Mn)As was used as a spin aligner under an external magnetic field[43].

    表 1  基于面内磁各向异性自旋注入端的自旋发光二极管

    Table 1.  Spin LED based on spin injector with in-plane magnetic anisotropic.

    自旋注入端LED结构PC/T文献时间
    FeInGaAs QW2%/300 KZhu等[16]2001
    Fe/(Al)GaAsGaAs QW32%/4.5 KHanbicki等[19]2002
    CoFe/Al2O3GaAs bulk21%/80 KMotsnyi等.[20]2002
    CoFe/MgOGaAs QW52%/100 KJiang等[15]2005
    Co/Al2O3InAs QD15%/1.7 KLombez等[21]2007
    CoFeB/MgOGaAs QW32%/100 KLu等[8]2008
    Fe/AlOxGaAs QW18%/80 KWu等[22]2010
    CoFeB/MgOGaAs QW25%/25 KBarate等[18]2014
    CoFeB/MgOGaAs QW23%(Sputtering), 18%(MBE)/25 KBarate等[23]2017
    下载: 导出CSV

    表 2  基于垂直磁各向异性的自旋注入端的自旋发光二极管

    Table 2.  Spin LED based on spin injector with out-plane magnetic anisotropic.

    自旋注入端LED结构Pc/T文献时间
    FeTbInGaAs QW0.75%/90 KGerhardt等[24]2005
    MnGaAlGaAs QW~3%/20 KAdelmann等[25]2006
    FeTbAlGaAs QW~3%/300 KHövel等[26]2008
    CoPtSiGe QW~3%/5 KGrenet等[27]2009
    CoPtGaAs QW~2.5%/20 KZarpellon等[28]2012
    Ta/CoFeB/MgOGaAs QW~20%/25 K, ~8%/RTLiang等[29]2014
    MgO/CoFeB/Ta/CoFeB/MgOGaAs QW~10%/10 KTao等[30]2016
    Mo/CoFeB/MgOGaAs QW~9.5%/10 KTao等[31]2018
    Ta/CoFeB/MgOGaAs QD35%/9 KCadiz等[32]2018
    下载: 导出CSV
    Baidu
  • [1]

    Holub M, Bhattacharya P 2007 J. Phys. D: Appl. Phys. 40 R179Google Scholar

    [2]

    Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T 2011 Appl. Phys. Lett. 98 162508Google Scholar

    [3]

    Asshoff P, Merz A, Kalt H, Hetterich M 2011 Appl. Phys. Lett. 98 112106Google Scholar

    [4]

    Kim D Y 2006 J. Korean Phys. Soc. 49 S505

    [5]

    Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787Google Scholar

    [6]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [7]

    Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65Google Scholar

    [8]

    Lu Y, Truong V G, Renucci P, Tran M, Jaffrès H, Deranlot C, George J M, Lemaître A, Zheng Y, Demaille D, Binh P H, Amand T, Marie X 2008 Appl. Phys. Lett. 93 152102Google Scholar

    [9]

    Rashba E I 2000 Phys. Rev. B 62 R16267Google Scholar

    [10]

    Elliott R J 1954 Phys. Rev. 96 266Google Scholar

    [11]

    Zhao F 2010 Ph. D Thesis (France: University of Toulouse)

    [12]

    Soldat H, Li M, Gerhardt N C, Hofmann M R, Ludwig A, Ebbing A, Reuter D, Wieck A D, Stromberg F, Keune W, Wende H 2011 Appl. Phys. Lett. 99 051102Google Scholar

    [13]

    Saikin S, Shen M, Cheng M C 2006 J. Phys. Condens. Matter 18 1535Google Scholar

    [14]

    Young D K, Johnston-Halperin E, Awschalom D D, Ohno Y, Ohno H 2002 Appl. Phys. Lett. 80 1598Google Scholar

    [15]

    Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R, Harris J S, Parkin S S P 2005 Phys. Rev. Lett. 94 056601Google Scholar

    [16]

    Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H P, Ploog K H 2001 Phys. Rev. Lett. 87 016601Google Scholar

    [17]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar

    [18]

    Barate P, Liang S, Zhang T T, Frougier J, Vidal M, Renucci P, Devaux X, Xu B, Jaffrès H, George J M, Marie X, Hehn M, Mangin S, Zheng Y, Amand T, Tao B, Han X F, Wang Z, Lu Y 2014 Appl. Phys. Lett. 105 012404Google Scholar

    [19]

    Hanbicki A T, Jonker B T, Itskos G, Kioseoglou G, Petrou A 2002 Appl. Phys. Lett. 80 1240Google Scholar

    [20]

    Motsnyi V F, De Boeck J, Das J, Van Roy W, Borghs G, Goovaerts E, Safarov V I 2002 Appl. Phys. Lett. 81 265Google Scholar

    [21]

    Lombez L, Braun P F, Renucci P, Gallo P, Carrère H, Binh P H, Marie X, Amand T, Gauffier J L, Urbaszek B, Arnoult A, Fontaine C, Deranlot C, Mattana R, Jaffrès H 2007 Phys. Status Solidi C 4 567Google Scholar

    [22]

    Wu H, Zheng H, Liu J, Li G, Xu P, Zhu H, Zhang H, Zhao J 2010 Sci. China Phys. Mech. 53 649Google Scholar

    [23]

    Barate P, Liang S H, Zhang T T, Frougier J, Xu B, Schieffer P, Vidal M, Jaffrès H, Lépine B, Tricot S, Cadiz F, Garandel T, George J M, Amand T, Devaux X, Hehn M, Mangin S, Tao B, Han X F, Wang Z G, Marie X, Lu Y, Renucci P 2017 Phys. Rev. Appl. 8 054027Google Scholar

    [24]

    Gerhardt N C, Hövel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502Google Scholar

    [25]

    Adelmann C, Hilton J L, Schultz B D, McKernan S, Palmstrøm C J, Lou X, Chiang H S, Crowell P A 2006 Appl. Phys. Lett. 89 112511Google Scholar

    [26]

    Hövel S, Gerhardt N C, Hofmann M R, Lo F Y, Ludwig A, Reuter D, Wieck A D, Schuster E, Wende H, Keune W, Petracic O, Westerholt K 2008 Appl. Phys. Lett. 93 021117Google Scholar

    [27]

    Grenet L, Jamet M, Noé P, Calvo V, Hartmann J M, Nistor L E, Rodmacq B, Auffret S, Warin P, Samson Y 2009 Appl. Phys. Lett. 94 032502Google Scholar

    [28]

    Zarpellon J, Jaffrès H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaître A, Freimuth F, Duong Q H, Renucci P, Marie X 2012 Phys. Rev. B 86 205314Google Scholar

    [29]

    Liang S H, Zhang T T, Barate P, Frougier J, Vidal M, Renucci P, Xu B, Jaffrès H, George J M, Devaux X, Hehn M, Marie X, Mangin S, Yang H X, Hallal A, Chshiev M, Amand T, Liu H F, Liu D P, Han X F, Wang Z G, Lu Y 2014 Phys. Rev. B 90 085310Google Scholar

    [30]

    Tao B S, Barate P, Frougier J, Renucci P, Xu B, Djeffal A, Jaffrès H, George J M, Marie X, Petit-Watelot S, Mangin S, Han X F, Wang Z G, Lu Y 2016 Appl. Phys. Lett. 108 152404Google Scholar

    [31]

    Tao B, Barate P, Devaux X, Renucci P, Frougier J, Djeffal A, Liang S, Xu B, Hehn M, Jaffrès H, George J M, Marie X, Mangin S, Han X, Wang Z, Lu Y 2018 Nanoscale 10 10213Google Scholar

    [32]

    Cadiz F, Djeffal A, Lagarde D, Balocchi A, Tao B, Xu B, Liang S, Stoffel M, Devaux X, Jaffres H, George J M, Hehn M, Mangin S, Carrere H, Marie X, Amand T, Han X, Wang Z, Urbaszek B, Lu Y, Renucci P 2018 Nano Lett. 18 2381Google Scholar

    [33]

    Kyrychenko F V, Stanton C J, Abernathy C R, Pearton S J, Ren F, Thaler G, Frazier R, Buyanova I, Bergman J P, Chen W M 2005 AIP Conf. Proc. 772 1319Google Scholar

    [34]

    Beschoten B, Johnston-Halperin E, Young D K, Poggio M, Grimaldi J E, Keller S, DenBaars S P, Mishra U K, Hu E L, Awschalom D D 2001 Phys. Rev. B 63 121202Google Scholar

    [35]

    Krishnamurthy S, van Schilfgaarde M, Newman N 2003 Appl. Phys. Lett. 83 1761Google Scholar

    [36]

    Buyanova I A, Izadifard M, Chen W M, Kim J, Ren F, Thaler G, Abernathy C R, Pearton S J, Pan C C, Chen G T, Chyi J I, Zavada J M 2005 AIP Conf. Proc. 772 1399Google Scholar

    [37]

    Ham M H, Yoon S, Park Y, Bian L, Ramsteiner M, Myoung J M 2006 J. Phys. Condens. Matter 18 7703Google Scholar

    [38]

    Banerjee D, Adari R, Sankaranarayan S, Kumar A, Ganguly S, Aldhaheri R W, Hussain M A, Balamesh A S, Saha D 2013 Appl. Phys. Lett. 103 242408Google Scholar

    [39]

    Chen J Y, Ho C Y, Lu M L, Chu L J, Chen K C, Chu S W, Chen W, Mou C Y, Chen Y F 2014 Nano Lett. 14 3130Google Scholar

    [40]

    Bhattacharya A, Baten Z, Frost T, Bhattacharya P 2017 IEEE Photon. Technol. Lett. 29 338Google Scholar

    [41]

    Bhattacharya A, Baten M Z, Iorsh I, Frost T, Kavokin A, Bhattacharya P 2017 Phys. Rev. Lett. 119 067701Google Scholar

    [42]

    Chen J Y, Wong T M, Chang C W, Dong C Y, Chen Y F 2014 Nat. Nanotechnol. 9 845Google Scholar

    [43]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [44]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化.  , 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质.  , 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [3] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化.  , 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [4] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [5] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究.  , 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [6] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数.  , 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [7] 窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机器件电流自旋极化放大性质研究.  , 2012, 61(8): 088503. doi: 10.7498/aps.61.088503
    [8] 王志明. GaAs自旋注入及巨霍尔效应的研究.  , 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [9] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响.  , 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [10] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [11] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究.  , 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [12] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运.  , 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [13] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究.  , 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [14] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [15] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析.  , 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [16] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究.  , 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [17] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论.  , 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运.  , 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  12415
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 修回日期:  2020-07-17
  • 上网日期:  2020-10-19
  • 刊出日期:  2020-10-20

/

返回文章
返回
Baidu
map