搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声涡旋信息应用研究进展

郭忠义 刘洪郡 李晶晶 周红平 郭凯 高隽

引用本文:
Citation:

声涡旋信息应用研究进展

郭忠义, 刘洪郡, 李晶晶, 周红平, 郭凯, 高隽

Research progress of applications of acoustic-vortex information

Guo Zhong-Yi, Liu Hong-Jun, Li Jing-Jing, Zhou Hong-Ping, Guo Kai, Gao Jun
PDF
HTML
导出引用
  • 涡旋声束携带的轨道角动量(orbital angular momentum, OAM)可以传递给物体, 在微粒操控等方面有较好的应用前景. 除此之外, 涡旋声束在声学通信方面同样具有巨大的潜力. 由于具有不同OAM模式值的涡旋声束相互正交, 因此, 将OAM模式引入传统声学通信领域, 为未来实现高速、大容量及高频谱效率的水下声通信技术提供了潜在的解决方案. 本文对OAM声束的研究进展进行了综述, 主要介绍了涡旋声束的产生和检测方案、传输特性, 及其在声通信方面的典型研究案例. 最后, 对OAM声束的未来发展趋势及其前景进行了分析与展望.
    The orbital angular momentum (OAM) carried by acoustic vortex beam can be transmitted to objects, which has a good application prospect in particle manipulation. In addition, the acoustic vortex beam also has great potentials in acoustic communication. The acoustic vortex beams with different OAM modes are orthogonal to each other, so the OAM mode can be introduced into the traditional acoustic communication, which provides a potential solution for realizing the high-speed, large-capacity and high-spectral efficiency of underwater acoustic communication technology in future. In this paper, we summarize the research progress of acoustic vortex beam, in which we mainly introduce the generation and detection scheme of acoustic vortex beam, its transmission characteristics, and its typical research cases in communication. Finally, the future development trend and the outlook of acoustic vortex beam are also analyzed and prospected.
      通信作者: 郭忠义, guozhongyi@hfut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775050)和中央高校基本研究经费(批准号: PA2019GDZC0098)资助的课题
      Corresponding author: Guo Zhong-Yi, guozhongyi@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775050) and the Fundamental Research Funds for the Central Universities of China (Grant No. PA2019GDZC0098)
    [1]

    Nye J F, Berry M V 1974 Proc. R. Soc. Lond. A 336 165Google Scholar

    [2]

    Berry M V 2004 J. Opt. A 6 259Google Scholar

    [3]

    Fu S Y, Zhang S K, Wang T L, Gao C Q 2016 Opt. Express 24 6240Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, et al. 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Kai C H, Huang P, Shen F, Zhou H P 2017 IEEE Photonics J. 9 7902510Google Scholar

    [6]

    Guo Z Y, Zhu L, Guo K, Shen F 2017 Nanoscale Res. Lett. 12 1Google Scholar

    [7]

    Guo Z Y, Wang Z K, Dedo M M, Guo K 2018 IEEE Photonics J. 10 7906511Google Scholar

    [8]

    Dedo M I, Wang Z K, Guo K, Sun Y X, Shen F, Zhou H P, Gao J, Sun R, Ding Z Z, Guo Z Y 2019 Appl. Sci. 9 2269Google Scholar

    [9]

    Kai C H, Feng Z K, Dedo M I, Huang P, Guo K, Shen F, Gao J, Guo Z Y 2019 Opt. Commun. 430 151Google Scholar

    [10]

    Wang Z K, Guo Z Y 2019 IEEE Access 7 163633Google Scholar

    [11]

    Feng Z K, Wang X Y, Dedo M I, Guo K, Shen F, Kai C H, Guo Z Y 2019 Opt. Commun. 435 441Google Scholar

    [12]

    Wang Z K, Dedo M M, Guo K, Zhou K Y, Shen F, Sun Y X, Liu S T, Guo Z Y 2019 IEEE Photonics J. 11 7903614Google Scholar

    [13]

    Dedo M M, Wang Z K, Guo K, Guo Z Y 2020 Opt. Commun. 456 124696Google Scholar

    [14]

    郭忠义, 龚超凡, 刘洪郡, 李晶晶, 王子坤, 杨阳, 宫玉彬 2020 光电工程 47 190593Google Scholar

    Guo Z Y, Gong C F, Liu H J, Li J J, Wang Z K, Yang Y, Gong Y B 2020 Opto-Electronic Engineering 47 190593Google Scholar

    [15]

    李铁, 谌娟, 柯熙政, 吕宏 2012 61 124208Google Scholar

    Li T, Chen J, Ke X Z, Lü H 2012 Acta. Phys. Sin. 61 124208Google Scholar

    [16]

    尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军 2018 67 114201Google Scholar

    Yin X L, Guo Y L, Yan H, Cui X Z, Chang H, Tian Q H, Wu G H, Zhang Q, Liu B, Xin X J 2018 Acta. Phys. Sin. 67 114201Google Scholar

    [17]

    崔粲, 王智, 李强, 吴重庆, 王健 2019 68 064211Google Scholar

    Cui C, Wang Z, Li Q, Wu C Q, Wang J 2019 Acta. Phys. Sin. 68 064211Google Scholar

    [18]

    Yin Z P, Zheng Q, Guo K, Guo Z Y 2019 Appl. Sci. 9 2949Google Scholar

    [19]

    Wang L L, Chen H Y, Guo K, Shen F, Guo Z Y 2019 Electronics 8 251Google Scholar

    [20]

    Yang Y, Wang Z L, Wang S M, et al. 2019 Electronics 8 1224Google Scholar

    [21]

    Yang Y, Guo K, Shen F, Gong Y B, Guo Z Y 2019 IEEE Access 7 138541Google Scholar

    [22]

    Shen F, Mu J N, Guo K, Guo Z Y 2019 IEEE T. Antenn. Propag. 67 5763Google Scholar

    [23]

    范启蒙, 尹成友 2018 67 144101Google Scholar

    Fan Q M, Yin C Y 2018 Acta. Phys. Sin. 67 144101Google Scholar

    [24]

    郭忠义, 汪彦哲, 郑群, 尹超逸, 杨阳, 宫玉彬 2019 雷达学报 8 631Google Scholar

    Guo Z Y, Wang Y Z, Zheng Q, Yin C Y, Yang Y, Gong Y B 2019 J. Radars 8 631Google Scholar

    [25]

    Broadbent E G, Moore D W 1979 Philos. Trans. R. Soc. Lond. 290 353Google Scholar

    [26]

    Marston P L 2009 J. Acoust. Soc. Am. 125 3539Google Scholar

    [27]

    Kang S T, Yeh C K 2010 IEEE T. Ultrason. Ferr. 57 1451Google Scholar

    [28]

    Zhang L, Marston P L 2011 Phys. Rev. E 84 035601Google Scholar

    [29]

    Baresch D, Thomas J L, Marchiano R 2013 J. Acoust. Soc. Am. 133 25Google Scholar

    [30]

    Marzo A, Caleap M, Drinkwater B W 2018 Phys. Rev. Lett. 120 044301Google Scholar

    [31]

    Demore C E M, Yang Z Y, Volovick A, Cochran S, MacDonald M P, Spalding G C 2012 Phys. Rev. Lett. 108 194301Google Scholar

    [32]

    Diego B, Thomas J L, Marchiano R 2016 Phys. Rev. Lett. 116 024301Google Scholar

    [33]

    Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661

    [34]

    Volke-Sepulveda K, Santillan A O, Boullosa R R 2008 Phys. Rev. Lett. 100 024302Google Scholar

    [35]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar

    [36]

    Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar

    [37]

    Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar

    [38]

    Anhauser A, Wunenburger R, Brasselet E 2012 Phys. Rev. Lett. 109 034301Google Scholar

    [39]

    Diego B, Thomas J, Marchiano R 2018 Phys. Rev. Lett. 121 074301Google Scholar

    [40]

    Bernard I, Doinikov A A, Marmottant P, Rabaud D, Poulain C, Thibault P 2017 Lab Chip 17 2470Google Scholar

    [41]

    Maxwell A D, Bailey M, Cunitz B W, et al. 2016 J. Acoust. Soc. Am. 139 2040

    [42]

    Baresch D, Thomas J L, Marchiano R 2013 J. Appl. Phys. 113 184901Google Scholar

    [43]

    Courtney C R P, Demore C E M, et al. 2014 Appl. Phys. Lett. 104 154103Google Scholar

    [44]

    Foresti D, Poulikakos D 2014 Phys. Rev. Lett. 112 024301Google Scholar

    [45]

    Baudoin M, Gerbedoen J, Riaud A, Matar O B, Smagin N, Thomas J 2019 Sci. Adv. 5 eaav1967Google Scholar

    [46]

    Chen X Y, Lam K H, Chen R M, Chen Z Y, Qian X J, Zhang J, Yu P, Zhou Q F 2019 Appl. Phys. Lett. 114 054103Google Scholar

    [47]

    Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661Google Scholar

    [48]

    Seah S A, Drinkwater B W, Carter T, Malkin R, Subramanian S 2014 IEEE T. Ultrason. Ferr. 61 1233Google Scholar

    [49]

    Courtney C R P, Drinkwater B W, Demore C E M, et al. 2013 Appl. Phys. Lett. 102 123508Google Scholar

    [50]

    Li W, Dai S J, Ma Q Y, Guo G P, Ding H P 2018 Chin. Phys. B 27 024301Google Scholar

    [51]

    Hong Z Y, Zhang J, Drinkwater B W 2015 EPL 110 14002Google Scholar

    [52]

    李禹志, 王青东, 郭各朴, 马青玉 2018 声学技术 41 704

    Li Y Z, Wang Q D, Guo G P, Ma Q Y 2018 Technical Acoustic 41 704

    [53]

    Skeldon K D, Wilson C, Edgar M, Padgett M J 2008 New J. Phys. 10 013018Google Scholar

    [54]

    Zhang R Q, Guo H L, Deng W Y, Huang X Q, Lu J Y, Liu Z Y 2020 Appl. Phys. Lett. 116 123503Google Scholar

    [55]

    Hefner B T, Marston P L 1999 J. Acoust. Soc. Am. 106 3313Google Scholar

    [56]

    Ma Z Y, Ma J, Zhang D, Tu J 2018 Chin. Phys. B 27 034301Google Scholar

    [57]

    Muelas-Hurtado R D, Ealo J L, Pazos-Ospina J F, Volke-Sepulveda K 2018 Appl. Phys. Lett. 112 084101Google Scholar

    [58]

    Yang L, Ma Q Y, Tu J, Zhang D 2013 J. Appl. Phys. 113 154904Google Scholar

    [59]

    Pazos-Ospina J F, Ealo J L, Franco E E 2017 J. Acoust. Soc. Am. 142 61Google Scholar

    [60]

    Li Y Z, Ma Q Y, Guo G P, Tu J, Zhang D 2018 J. Appl. Phys. 124 114901Google Scholar

    [61]

    Gspan S, Meyer A, Bernet S, Ritsch-Marte M 2004 J. Acoust. Soc. Am. 115 1142Google Scholar

    [62]

    Wunenburger R, Lozano J I V, Brasselet E 2015 New. J. Phys 17 103022Google Scholar

    [63]

    Jimenez N, Romero-García V, Picó R, et al. 2014 EPL 106 24005Google Scholar

    [64]

    Jiang X, Zhao J J, Liu S L, Liang B, Zou X Y, Yang J, Qiu C W, Cheng J C 2016 Appl. Phys. Lett. 108 203501Google Scholar

    [65]

    Jiménez N, Sánchez-Morcillo V, Picó R, García-Raffi L M, Romero-García V, Staliunas K 2015 Phys. Procedia 70 245Google Scholar

    [66]

    Wang T, Ke M Z, Li W P, Yang Q, Qiu C Y, Liu Z Y 2016 Appl. Phys. Lett. 109 123506Google Scholar

    [67]

    Jimenez N, Romero-García V, García-Raffi L, Camarena F, Staliunas K 2018 Appl. Phys. Lett. 112 204101Google Scholar

    [68]

    Muelas-Hurtado R D, Ealo J L, Volke-Sepúlveda K 2020 Appl. Phys. Lett. 116 114101Google Scholar

    [69]

    Zhou H P, Li J J, Guo K, Guo Z Y 2019 J. Acoust. Soc. Am. 146 4237Google Scholar

    [70]

    Jia Y R, Wei Q, Wu D J, Xu Z, Liu X J 2018 Appl. Phys. Lett. 112 173501Google Scholar

    [71]

    Chen D C, Zhou Q X, Zhu X F, Xu Z, Wu D J 2019 Appl. Phys. Lett. 115 083501Google Scholar

    [72]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [73]

    Jia Y R, Ji W Q, Wu D J, Liu X J 2018 Appl. Phys. Lett. 113 173502Google Scholar

    [74]

    Guo Z Y, Liu H J, Zhou H, et al. 2019 Phys. Rev. E 100 053315Google Scholar

    [75]

    Ye L P, Qiu C Y, Lu J Y, Tang K, Jia H, Ke M Z, Peng S S, Liu Z Y 2016 Aip Adv. 6 085007Google Scholar

    [76]

    Esfahlani H, Lissek H, Mosig J R 2017 Phys. Rev. B 95 024312Google Scholar

    [77]

    Naify C J, Rohde C A, Martin T P, Nicholas M, Guild M D, Orris G J 2016 Appl. Phys. Lett. 108 223503Google Scholar

    [78]

    Charles A R, Christina J N, Matthew D G, et al. 2017 Proc. SPIE 10170 101701I

    [79]

    Jiménez-Gambín D, Jiménez N, Benlloch J M, Camarena F 2019 Sci. Rep. 9 1Google Scholar

    [80]

    Zeng J F, Zhang X, Wu F G, Han L X, Wang Q, Mu Z F, Dong H F, Yao Y W 2019 Phys. Lett. A 383 2640Google Scholar

    [81]

    Liu J J, Liang B, Yang J, Yang J, Cheng J C 2020 Sci. Rep. 10 1Google Scholar

    [82]

    Fan S W, Wang Y F, Cao L Y, et al. 2020 Appl. Phys. Lett. 116 163504Google Scholar

    [83]

    Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. U. S. A. 114 7250Google Scholar

    [84]

    Jiang X, Liang B, Cheng J C, Qiu C Y 2018 Adv. Mater. 30 1800257Google Scholar

    [85]

    Stankevich D A 2019 CEUR Workshop Proceedings 2416 300

    [86]

    Liu F M, Li W P, Pu Z H, Ke M Z 2019 Appl. Phys. Lett. 114 193501Google Scholar

    [87]

    Jiang X, Shi C Z, Wang Y, Smalley J, Cheng J C, Zhang X 2020 Phys. Rev. Appl. 13 014014Google Scholar

    [88]

    付时尧, 高春清 2018 67 034201Google Scholar

    Fu S Y, Gao C Q 2018 Acta. Phys. Sin. 67 034201Google Scholar

    [89]

    Gong C F, Li J J, Guo K, Zhou H P, Guo Z Y 2020 Chin. Phys. B 29 104301Google Scholar

    [90]

    Zhou H P, Li J J, Gong C F, Guo K, Guo Z Y 2020 J. Acoust. Soc. Am. 148 167Google Scholar

    [91]

    Nye J F, Wright F J 2000 Am. J. Phys. 68 776Google Scholar

    [92]

    Thomas J L, Marchiano R 2003 Phys. Rev. Lett. 91 244302Google Scholar

    [93]

    Marchiano R, Thomas J L 2005 Phys. Rev. E 71 066616Google Scholar

    [94]

    Soldevilla M S, McKenna M F, Wiggins S M, et al. 2005 J. Exp. Biol. 208 2319Google Scholar

    [95]

    Gu J J, Yun J 2018 IEEE Trans. Biomed. Eng. 65 1258

    [96]

    Zhang L K, Swinney H L 2017 J. Acoust. Soc. Am. 141 3186Google Scholar

    [97]

    Marchiano R, Coulouvrat F, Ganjehi L, Thomas J L 2008 Phys. Rev. E 77 016605Google Scholar

    [98]

    Brunet T, Thomas J, Marchiano R, Coulouvrat F 2009 New J. Phys. 11 013002Google Scholar

    [99]

    Fan X D, Zou Z G, Zhang L K 2019 Phys. Rev. Research 1 032014Google Scholar

    [100]

    Mullen L, Laux A, Cochenour B 2009 Appl. Opt. 48 2607Google Scholar

    [101]

    Mullen L, Alley D, Cochenour B 2011 Appl. Opt. 50 1396Google Scholar

    [102]

    梁彬, 程建春 2017 物理 46 658Google Scholar

    Liang B, Cheng J C 2017 Physics 46 658Google Scholar

    [103]

    Zhang H, Yang J 2019 arXiv: 1902.10196 [eess.SP]

    [104]

    LI X J, Li Y Z, Ma Q Y, Guo G P, Tu J, Zhang D 2020 J. Appl. Phys. 127 124902Google Scholar

  • 图 1  (a) 利用换能器阵列产生OAM声束示意图[56]; (b) 利用螺旋型有源衍射声栅产生OAM声束示意图[57]; (c) 利用声学SPP产生m = 4的OAM声束示意图(c1)和3D打印实物图(c2)[62]; (d) 用于产生OAM声束的(d1)轴对称声栅[63]、(d2)对数螺旋声栅[64]、(d3)阿基米德螺旋声栅[66]、(d4)菲涅耳半波片声栅[67,68]、(d5)费马螺旋声栅[69]; (e) 共振型环形超表面产生OAM声束示意图[72]; (f) 复合迷宫型环形超表面产生OAM声束示意图[73]

    Fig. 1.  (a) Schematics of generating acoustic OAM beams using transducers array[56]; (b) schematics of generating acoustic OAM beams by spiral active diffraction grating[57]; (c) schematics of a SPP with topological charge m = 4 (c1), picture of the 3D printed thermoplastic acoustic SPP (c2)[62]; (d) using the axisymmetric sound grating[63] (d1), logarithmic spiral sound grating[64] (d2), Archimedes spiral sound grating[66] (d3), Fresnel zone plate sound grating[67,68] (d4), Fermat spiral sound grating[69] (d5) to generate acoustic OAM beams; (e) acoustic OAM beams generated by resonant ring metasurface[72]; (f) acoustic OAM beams generated by the complex labyrinth type ring metasurface[73].

    图 2  (a)采用声学共振结构实现高阶和复合OAM声束的产生[74], (a1)结构示意图及不同检测平面上的声压与相位分布, (a2)产生复合OAM声束的相位全息图, (a3)加载到超表面上的离散化相位全息图, (a4)检测产生声场组成的结构示意图; (b)采用费马螺旋实现高阶和复合OAM声束的产生[69], (b1)结构示意图、声压和相位分布以及模式检测结果, (b2)进行模式分离的原理图及(b3)结果

    Fig. 2.  (a) Generation of high-order and multiplexed acoustic OAM beams by acoustic resonance structure[74], (a1) structure and the distributions of pressure and phase of different planes, (a2) multiplexed phase hologram of OAM sound beams, (a3) discretization phase hologram, (a4) structure to detect vortex field; (b) generation OAM sound beams by Fermat’s spiral diffraction grating[69], (b1) structural diagram, sound pressure, phase distribution, and power density spectrum, (b2) schematic diagram for detection, and (b3) results.

    图 3  (a)利用内积算法检测OAM声束示意[83]; (b)利用抛物线型解码超表面检测OAM声束示意图(b1)和拓扑荷值m和反射角α的函数关系(b2)[87]; (c)利用圆孔阵列干涉屏检测OAM声束的(c1)示意图和(c2)远场强度分布图[89]; (d)利用(d1)环形三角孔径与(d2)环形椭圆孔径实现OAM声束检测示意图(d1), (d2)及远场强度分布(d3), (d4)[90]

    Fig. 3.  (a) Inner product algorithm is used to detect OAM sound beams[83]; (b) detection of OAM sound beams by using parabolic decoding metasurface (b1), relationship between the reflection angle, α, and OAM charge, m[87] (b2); (c) detection principle of multipoints interferometer (c1), far-field intensity distributions (c2)[89]; (d) sketch map (d1), (d2) and far-field intensity distributions (d3), (d4) for (d1) annular triangle aperture and (d2) annular ellipse aperture[90].

    图 4  OAM声束通过(a)一维声透镜和(b)二维声透镜的非线性传播[97], 其中上图显示XOZ平面的均方根振幅. 下图是基波和二次谐波在虚线表示的不同距离(Z = 0.07, 0.23, 0.32和0.85)的XY平面上的相位

    Fig. 4.  Nonlinear propagation of a single OAM sound beams through (a) a 1D acoustical lens and (b) a 2D acoustical lens[97]. Top view presents the RMS (root mean square) amplitude in the XOZ plane. Bottom views are representations of the phase for the fundamental frequency and the second harmonic across plane X, Y at different distances: Z = 0.07, 0.23, 0.32, and 0.85 the positions of these planes are indicated by dashed lines on the top view.

    图 5  (a) 携带拓扑荷m = 1 (左)和m = 3 (右)的非线性OAM声束在不同时刻的瞬时声压(黑色箭头表示其中一个激波的位置)[98]; (b) (b1)分层介质中OAM声束弯曲的模拟, (b2)深度与声速的关系, (b3)在不同的传播距离x下, 相位在y-z截面上的拉伸和变形, (b4)在分层海洋中(左)的相位(彩色图)和能量通量(黑色箭头和白色流线)(顶部)以及与在非分层海洋中(右)的传播的比较[99]

    Fig. 5.  (a) Instantaneous sound pressure of a nonlinear OAM beam carrying topological charge m = 1 (left) and m = 3 (right) at different moments[98]. The black arrows indicate the position of one of the three shocks. (b) (b1) Simulation of OAM sound beams bending in a stratified medium, (b2) the sound speed profile, (b3) stretching and distorting of the phase on y-z cross sections at different propagating distances x, (b4) vortex phases (color plots) and energy flux (black arrows and white streamlines) in the stratified ocean (left) and a comparison with propagation in an unstratified ocean (right)[99].

    图 6  (a) (a1)实验原理示意图, (a2)单词“Berkly”对应的ASCII编码方式, (a3)实验测量得到的单词“Berkly”对应的调制信号包含的八种拓扑荷的声压幅度与相位[83]; (b) (b1)基于OAM声束的调制-解调原理示意图, (b2)不同复合信号在解码端两个区域中的分布情况, (b3)用超表面解码前后的信号幅度(左侧)及相位(右侧)分布图[84,102]

    Fig. 6.  (a) (a1) Schematic diagram of the experiment, (a2) the ASCII code corresponding to the word “Berkly”, (a3) the amplitude and phase of the eight topological charges contained in the modulation signal corresponding to the word “Berkly” as measured by the experiment[83]; (b) (b1) schematic diagram of the modulation-demodulation principle based on the OAM sound beams, (b2) distribution of different composite signals in two regions of the decoding terminal, (b3) distribution diagram of signal amplitude (left) and phase (right) before and after the decoding with the hypersurface[84,102].

    图 7  (a) 水声通信系统多路复用8 OAM模式的概念示意图; (b) (b1) 通信系统传输的256 × 256像素的灰度图像lena (lena.jpg); (b2) 在20 dB信噪比下, 仅考虑加性高斯白噪声得到的接收图像[103]

    Fig. 7.  (a) Notion of underwater acoustic communication system multiplexing 8 OAM topological charges; (b) (b1) the gray scale image with 256 × 256 pixels of lena (lena.jpg) to be transmitted through the communication system, (b2) the receiving image obtained at 20 dB SNR where additive white gaussian noise (AWGN) was only concerned[103].

    表 1  不同涡旋声束产生方案性能比较

    Table 1.  Performance comparison of different schemes of generating acoustic vortex beams.

    有源方法无源方法
    螺旋相控源螺旋型源相位板螺旋声栅超表面
    成本
    速度正常正常正常正常正常
    可靠性
    复杂性
    OAM模式复合复合单一复合复合
    工作频段
    下载: 导出CSV

    表 2  不同涡旋声束解调方案性能比较

    Table 2.  Performances comparison of different demodulation schemes of acoustic vortex beams.

    内积算法降低OAM模式的阶数机器学习螺旋波导抛物线型解码超表面圆孔阵列/环形孔径
    成本
    速度正常正常正常正常正常正常
    可靠性
    复杂型复杂复杂简单简单简单简单
    OAM模式复合复合复合仅能分辨符号复合单一
    工作频段
    下载: 导出CSV
    Baidu
  • [1]

    Nye J F, Berry M V 1974 Proc. R. Soc. Lond. A 336 165Google Scholar

    [2]

    Berry M V 2004 J. Opt. A 6 259Google Scholar

    [3]

    Fu S Y, Zhang S K, Wang T L, Gao C Q 2016 Opt. Express 24 6240Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, et al. 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Kai C H, Huang P, Shen F, Zhou H P 2017 IEEE Photonics J. 9 7902510Google Scholar

    [6]

    Guo Z Y, Zhu L, Guo K, Shen F 2017 Nanoscale Res. Lett. 12 1Google Scholar

    [7]

    Guo Z Y, Wang Z K, Dedo M M, Guo K 2018 IEEE Photonics J. 10 7906511Google Scholar

    [8]

    Dedo M I, Wang Z K, Guo K, Sun Y X, Shen F, Zhou H P, Gao J, Sun R, Ding Z Z, Guo Z Y 2019 Appl. Sci. 9 2269Google Scholar

    [9]

    Kai C H, Feng Z K, Dedo M I, Huang P, Guo K, Shen F, Gao J, Guo Z Y 2019 Opt. Commun. 430 151Google Scholar

    [10]

    Wang Z K, Guo Z Y 2019 IEEE Access 7 163633Google Scholar

    [11]

    Feng Z K, Wang X Y, Dedo M I, Guo K, Shen F, Kai C H, Guo Z Y 2019 Opt. Commun. 435 441Google Scholar

    [12]

    Wang Z K, Dedo M M, Guo K, Zhou K Y, Shen F, Sun Y X, Liu S T, Guo Z Y 2019 IEEE Photonics J. 11 7903614Google Scholar

    [13]

    Dedo M M, Wang Z K, Guo K, Guo Z Y 2020 Opt. Commun. 456 124696Google Scholar

    [14]

    郭忠义, 龚超凡, 刘洪郡, 李晶晶, 王子坤, 杨阳, 宫玉彬 2020 光电工程 47 190593Google Scholar

    Guo Z Y, Gong C F, Liu H J, Li J J, Wang Z K, Yang Y, Gong Y B 2020 Opto-Electronic Engineering 47 190593Google Scholar

    [15]

    李铁, 谌娟, 柯熙政, 吕宏 2012 61 124208Google Scholar

    Li T, Chen J, Ke X Z, Lü H 2012 Acta. Phys. Sin. 61 124208Google Scholar

    [16]

    尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军 2018 67 114201Google Scholar

    Yin X L, Guo Y L, Yan H, Cui X Z, Chang H, Tian Q H, Wu G H, Zhang Q, Liu B, Xin X J 2018 Acta. Phys. Sin. 67 114201Google Scholar

    [17]

    崔粲, 王智, 李强, 吴重庆, 王健 2019 68 064211Google Scholar

    Cui C, Wang Z, Li Q, Wu C Q, Wang J 2019 Acta. Phys. Sin. 68 064211Google Scholar

    [18]

    Yin Z P, Zheng Q, Guo K, Guo Z Y 2019 Appl. Sci. 9 2949Google Scholar

    [19]

    Wang L L, Chen H Y, Guo K, Shen F, Guo Z Y 2019 Electronics 8 251Google Scholar

    [20]

    Yang Y, Wang Z L, Wang S M, et al. 2019 Electronics 8 1224Google Scholar

    [21]

    Yang Y, Guo K, Shen F, Gong Y B, Guo Z Y 2019 IEEE Access 7 138541Google Scholar

    [22]

    Shen F, Mu J N, Guo K, Guo Z Y 2019 IEEE T. Antenn. Propag. 67 5763Google Scholar

    [23]

    范启蒙, 尹成友 2018 67 144101Google Scholar

    Fan Q M, Yin C Y 2018 Acta. Phys. Sin. 67 144101Google Scholar

    [24]

    郭忠义, 汪彦哲, 郑群, 尹超逸, 杨阳, 宫玉彬 2019 雷达学报 8 631Google Scholar

    Guo Z Y, Wang Y Z, Zheng Q, Yin C Y, Yang Y, Gong Y B 2019 J. Radars 8 631Google Scholar

    [25]

    Broadbent E G, Moore D W 1979 Philos. Trans. R. Soc. Lond. 290 353Google Scholar

    [26]

    Marston P L 2009 J. Acoust. Soc. Am. 125 3539Google Scholar

    [27]

    Kang S T, Yeh C K 2010 IEEE T. Ultrason. Ferr. 57 1451Google Scholar

    [28]

    Zhang L, Marston P L 2011 Phys. Rev. E 84 035601Google Scholar

    [29]

    Baresch D, Thomas J L, Marchiano R 2013 J. Acoust. Soc. Am. 133 25Google Scholar

    [30]

    Marzo A, Caleap M, Drinkwater B W 2018 Phys. Rev. Lett. 120 044301Google Scholar

    [31]

    Demore C E M, Yang Z Y, Volovick A, Cochran S, MacDonald M P, Spalding G C 2012 Phys. Rev. Lett. 108 194301Google Scholar

    [32]

    Diego B, Thomas J L, Marchiano R 2016 Phys. Rev. Lett. 116 024301Google Scholar

    [33]

    Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661

    [34]

    Volke-Sepulveda K, Santillan A O, Boullosa R R 2008 Phys. Rev. Lett. 100 024302Google Scholar

    [35]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar

    [36]

    Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar

    [37]

    Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar

    [38]

    Anhauser A, Wunenburger R, Brasselet E 2012 Phys. Rev. Lett. 109 034301Google Scholar

    [39]

    Diego B, Thomas J, Marchiano R 2018 Phys. Rev. Lett. 121 074301Google Scholar

    [40]

    Bernard I, Doinikov A A, Marmottant P, Rabaud D, Poulain C, Thibault P 2017 Lab Chip 17 2470Google Scholar

    [41]

    Maxwell A D, Bailey M, Cunitz B W, et al. 2016 J. Acoust. Soc. Am. 139 2040

    [42]

    Baresch D, Thomas J L, Marchiano R 2013 J. Appl. Phys. 113 184901Google Scholar

    [43]

    Courtney C R P, Demore C E M, et al. 2014 Appl. Phys. Lett. 104 154103Google Scholar

    [44]

    Foresti D, Poulikakos D 2014 Phys. Rev. Lett. 112 024301Google Scholar

    [45]

    Baudoin M, Gerbedoen J, Riaud A, Matar O B, Smagin N, Thomas J 2019 Sci. Adv. 5 eaav1967Google Scholar

    [46]

    Chen X Y, Lam K H, Chen R M, Chen Z Y, Qian X J, Zhang J, Yu P, Zhou Q F 2019 Appl. Phys. Lett. 114 054103Google Scholar

    [47]

    Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661Google Scholar

    [48]

    Seah S A, Drinkwater B W, Carter T, Malkin R, Subramanian S 2014 IEEE T. Ultrason. Ferr. 61 1233Google Scholar

    [49]

    Courtney C R P, Drinkwater B W, Demore C E M, et al. 2013 Appl. Phys. Lett. 102 123508Google Scholar

    [50]

    Li W, Dai S J, Ma Q Y, Guo G P, Ding H P 2018 Chin. Phys. B 27 024301Google Scholar

    [51]

    Hong Z Y, Zhang J, Drinkwater B W 2015 EPL 110 14002Google Scholar

    [52]

    李禹志, 王青东, 郭各朴, 马青玉 2018 声学技术 41 704

    Li Y Z, Wang Q D, Guo G P, Ma Q Y 2018 Technical Acoustic 41 704

    [53]

    Skeldon K D, Wilson C, Edgar M, Padgett M J 2008 New J. Phys. 10 013018Google Scholar

    [54]

    Zhang R Q, Guo H L, Deng W Y, Huang X Q, Lu J Y, Liu Z Y 2020 Appl. Phys. Lett. 116 123503Google Scholar

    [55]

    Hefner B T, Marston P L 1999 J. Acoust. Soc. Am. 106 3313Google Scholar

    [56]

    Ma Z Y, Ma J, Zhang D, Tu J 2018 Chin. Phys. B 27 034301Google Scholar

    [57]

    Muelas-Hurtado R D, Ealo J L, Pazos-Ospina J F, Volke-Sepulveda K 2018 Appl. Phys. Lett. 112 084101Google Scholar

    [58]

    Yang L, Ma Q Y, Tu J, Zhang D 2013 J. Appl. Phys. 113 154904Google Scholar

    [59]

    Pazos-Ospina J F, Ealo J L, Franco E E 2017 J. Acoust. Soc. Am. 142 61Google Scholar

    [60]

    Li Y Z, Ma Q Y, Guo G P, Tu J, Zhang D 2018 J. Appl. Phys. 124 114901Google Scholar

    [61]

    Gspan S, Meyer A, Bernet S, Ritsch-Marte M 2004 J. Acoust. Soc. Am. 115 1142Google Scholar

    [62]

    Wunenburger R, Lozano J I V, Brasselet E 2015 New. J. Phys 17 103022Google Scholar

    [63]

    Jimenez N, Romero-García V, Picó R, et al. 2014 EPL 106 24005Google Scholar

    [64]

    Jiang X, Zhao J J, Liu S L, Liang B, Zou X Y, Yang J, Qiu C W, Cheng J C 2016 Appl. Phys. Lett. 108 203501Google Scholar

    [65]

    Jiménez N, Sánchez-Morcillo V, Picó R, García-Raffi L M, Romero-García V, Staliunas K 2015 Phys. Procedia 70 245Google Scholar

    [66]

    Wang T, Ke M Z, Li W P, Yang Q, Qiu C Y, Liu Z Y 2016 Appl. Phys. Lett. 109 123506Google Scholar

    [67]

    Jimenez N, Romero-García V, García-Raffi L, Camarena F, Staliunas K 2018 Appl. Phys. Lett. 112 204101Google Scholar

    [68]

    Muelas-Hurtado R D, Ealo J L, Volke-Sepúlveda K 2020 Appl. Phys. Lett. 116 114101Google Scholar

    [69]

    Zhou H P, Li J J, Guo K, Guo Z Y 2019 J. Acoust. Soc. Am. 146 4237Google Scholar

    [70]

    Jia Y R, Wei Q, Wu D J, Xu Z, Liu X J 2018 Appl. Phys. Lett. 112 173501Google Scholar

    [71]

    Chen D C, Zhou Q X, Zhu X F, Xu Z, Wu D J 2019 Appl. Phys. Lett. 115 083501Google Scholar

    [72]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [73]

    Jia Y R, Ji W Q, Wu D J, Liu X J 2018 Appl. Phys. Lett. 113 173502Google Scholar

    [74]

    Guo Z Y, Liu H J, Zhou H, et al. 2019 Phys. Rev. E 100 053315Google Scholar

    [75]

    Ye L P, Qiu C Y, Lu J Y, Tang K, Jia H, Ke M Z, Peng S S, Liu Z Y 2016 Aip Adv. 6 085007Google Scholar

    [76]

    Esfahlani H, Lissek H, Mosig J R 2017 Phys. Rev. B 95 024312Google Scholar

    [77]

    Naify C J, Rohde C A, Martin T P, Nicholas M, Guild M D, Orris G J 2016 Appl. Phys. Lett. 108 223503Google Scholar

    [78]

    Charles A R, Christina J N, Matthew D G, et al. 2017 Proc. SPIE 10170 101701I

    [79]

    Jiménez-Gambín D, Jiménez N, Benlloch J M, Camarena F 2019 Sci. Rep. 9 1Google Scholar

    [80]

    Zeng J F, Zhang X, Wu F G, Han L X, Wang Q, Mu Z F, Dong H F, Yao Y W 2019 Phys. Lett. A 383 2640Google Scholar

    [81]

    Liu J J, Liang B, Yang J, Yang J, Cheng J C 2020 Sci. Rep. 10 1Google Scholar

    [82]

    Fan S W, Wang Y F, Cao L Y, et al. 2020 Appl. Phys. Lett. 116 163504Google Scholar

    [83]

    Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. U. S. A. 114 7250Google Scholar

    [84]

    Jiang X, Liang B, Cheng J C, Qiu C Y 2018 Adv. Mater. 30 1800257Google Scholar

    [85]

    Stankevich D A 2019 CEUR Workshop Proceedings 2416 300

    [86]

    Liu F M, Li W P, Pu Z H, Ke M Z 2019 Appl. Phys. Lett. 114 193501Google Scholar

    [87]

    Jiang X, Shi C Z, Wang Y, Smalley J, Cheng J C, Zhang X 2020 Phys. Rev. Appl. 13 014014Google Scholar

    [88]

    付时尧, 高春清 2018 67 034201Google Scholar

    Fu S Y, Gao C Q 2018 Acta. Phys. Sin. 67 034201Google Scholar

    [89]

    Gong C F, Li J J, Guo K, Zhou H P, Guo Z Y 2020 Chin. Phys. B 29 104301Google Scholar

    [90]

    Zhou H P, Li J J, Gong C F, Guo K, Guo Z Y 2020 J. Acoust. Soc. Am. 148 167Google Scholar

    [91]

    Nye J F, Wright F J 2000 Am. J. Phys. 68 776Google Scholar

    [92]

    Thomas J L, Marchiano R 2003 Phys. Rev. Lett. 91 244302Google Scholar

    [93]

    Marchiano R, Thomas J L 2005 Phys. Rev. E 71 066616Google Scholar

    [94]

    Soldevilla M S, McKenna M F, Wiggins S M, et al. 2005 J. Exp. Biol. 208 2319Google Scholar

    [95]

    Gu J J, Yun J 2018 IEEE Trans. Biomed. Eng. 65 1258

    [96]

    Zhang L K, Swinney H L 2017 J. Acoust. Soc. Am. 141 3186Google Scholar

    [97]

    Marchiano R, Coulouvrat F, Ganjehi L, Thomas J L 2008 Phys. Rev. E 77 016605Google Scholar

    [98]

    Brunet T, Thomas J, Marchiano R, Coulouvrat F 2009 New J. Phys. 11 013002Google Scholar

    [99]

    Fan X D, Zou Z G, Zhang L K 2019 Phys. Rev. Research 1 032014Google Scholar

    [100]

    Mullen L, Laux A, Cochenour B 2009 Appl. Opt. 48 2607Google Scholar

    [101]

    Mullen L, Alley D, Cochenour B 2011 Appl. Opt. 50 1396Google Scholar

    [102]

    梁彬, 程建春 2017 物理 46 658Google Scholar

    Liang B, Cheng J C 2017 Physics 46 658Google Scholar

    [103]

    Zhang H, Yang J 2019 arXiv: 1902.10196 [eess.SP]

    [104]

    LI X J, Li Y Z, Ma Q Y, Guo G P, Tu J, Zhang D 2020 J. Appl. Phys. 127 124902Google Scholar

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究.  , 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器.  , 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [3] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成.  , 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响.  , 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性.  , 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制.  , 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展.  , 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统.  , 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [11] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器.  , 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [12] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究.  , 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究.  , 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量.  , 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究.  , 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究.  , 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递.  , 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转.  , 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  9960
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-07-10
  • 上网日期:  2020-12-11
  • 刊出日期:  2020-12-20

/

返回文章
返回
Baidu
map