-
A multi-party quantum key agreement protocol based on d-level multi-particle GHZ states is proposed. The “d-level” is common in other quantum cryptographic protocols, but there are few researches in the field of quantum key agreement. In our scheme, we introduce two indistinguishable orthogonal bases, i.e. the quantum Fourier transform and shift operation, into a d-level quantum system. In addition, we make full use of shift operation to encode the key into the sequence of quantum states, and the key can be measured by the d-level Z-basis. By decoding and calculating, each participant can equally extract other participants’ key and obtain the final shared key
$ K = {K_0} \oplus {K_1} \oplus \cdots \oplus {K_{k - 1}}$ . The protocol resists external eavesdropping by inserting decoy states and conducting two security checks. Furthermore, we present an example by assigning certain values to parameters for illustrative purpose. Finally, QKA protocol mainly involves two types of attacks: participant attack and external attack. The external attack can be divided into Trojan attack, intercept-resend attack, and entangle-measure attack. To demonstrate the security of the scheme, we analyze the two types of attacks. The results show that the scheme can effectively resist the attack from internal participants and external eavesdroppers. However, the premise of our protocol is based on the ideal quantum channel. In practical applications, particles are usually affected by noise in the process of quantum channel transmission. Therefore, how the agreement adapts itself to a more complicated environment is our main work in the future.-
Keywords:
- d-level /
- multi-party quantum key agreement /
- shift operation /
- security analysis
[1] Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149Google Scholar
[2] Chong S K, Hwang, T 2010 Opt. Commun. 283 1192Google Scholar
[3] Huang W, Su Q, Wu X, Li Y B, Sun L 2014 Int. J. Theor. Phys. 53 2891Google Scholar
[4] Shen D S, Ma W P, Wang L L 2014 Quantum Inf. Process. 13 2313Google Scholar
[5] He Y F, Ma W P 2015 Quantum Inf. Process. 14 3483Google Scholar
[6] He Y F, Ma W P 2017 Int. J. Quantum Inf. 3 1750018Google Scholar
[7] Yang Y G, Li B R, Li D, Zhou Y H, Shi W M 2019 Quantum Inf. Process. 18 322Google Scholar
[8] Zhou Y H, Wang M F, Shi W M, Yang Y G, Zhang J 2020 Quantum Inf. Process. 19 100Google Scholar
[9] Shi R H, Zhong H 2013 Quantum Inf. Process 12 921Google Scholar
[10] Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797Google Scholar
[11] Sun Z, Zhang C, Wang B H, Li Q, Long D Y 2013 Quantum Inf. Process. 12 3411Google Scholar
[12] 尹逊汝, 马文平, 申冬苏, 王丽丽 2013 62 170304Google Scholar
Yin X R, Ma W P, Shen D S, Wang L L 2013 Acta Phys. Sin. 62 170304Google Scholar
[13] Xu G B, Wen Q Y, Gao F, Qin S J 2014 Quantum Inf. Process. 13 2587Google Scholar
[14] Sun Z, Zhang C, Wang P, Yu J P, Zhang Y, Long D Y 2016 Int. J. Theor. Phys. 55 1920Google Scholar
[15] Sun Z, Yu J, Wang P 2016 Quantum Inf. Process. 15 373Google Scholar
[16] Cai T, Jiang M, Cao G 2018 Quantum Inf. Process. 17 103Google Scholar
[17] Lin S, Guo G D, Chen A M, Liu X F 2019 Quantum Inf. Process. 18 1Google Scholar
[18] Liu H N, Liang X Q, Jiang D H, Zhang Y H, Xu G B 2019 Quantum Inf. Process. 18 242Google Scholar
[19] Zhou N R, Zhu K N, Wang Y Q 2020 Int. J. Theor. Phys. 59 663Google Scholar
[20] Huang W, Wen Q Y, Liu B, Su Q, Gao F 2014 Quantum Inf. Process. 13 1651Google Scholar
[21] Cai B B, Guo G D, Lin S 2017 Int. J. Theor. Phys. 56 1039Google Scholar
[22] Min S Q, Chen H Y, Gong L H 2018 Int. J. Theor. Phys. 57 1811Google Scholar
[23] Wang S S, Xu G B, Liang X Q 2018 Int. J. Theor. Phys. 57 3716Google Scholar
[24] Zhao X Q, Zhou N R, Chen H Y, Gong L H 2019 Int. J. Theor. Phys. 58 436Google Scholar
[25] Liu H N, Liang X Q, Jiang D H, Zhang Y H, Xu G B 2019 Int. J. Theor. Phys. 58 1659Google Scholar
[26] Yin X R, Ma W P 2019 Int. J. Theor. Phys. 58 631Google Scholar
[27] Zhou Y H, Zhang J, Shi W M, Yang Y G 2020 Mod. Phys. Lett. B 4 2050083Google Scholar
[28] Wang W, Zhou B M, Zhang L 2020 Int. J. Theor. Phys. 59 1944Google Scholar
[29] Tang J, Shi L, Wei J H 2020 Mod. Phys. Lett. B 49 2050201Google Scholar
[30] Bouwmeester D, Pan J W, Daniell M, Weinfurte H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345Google Scholar
[31] 周南润, 宋汉冲, 龙黎华, 刘晔 2012 61 214203Google Scholar
Zhou N R, Chong S H, Gong L H, Liu Y 2012 Acta Phys. Sin. 61 214203Google Scholar
[32] Zhang Z J, Man Z X, Shi S H 2005 Int. J. Quantum Inf. 03 555Google Scholar
[33] Hwang T, Hwang C C, Li C M 2011 Phys. Scripta 83 045004Google Scholar
[34] Kao S H, Tsai C W, Tzonelih H 2011 Commun. Theor. Phys. 55 1007Google Scholar
[35] Cai Q Y 2006 Phys. Lett. A 351 23Google Scholar
[36] Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302Google Scholar
[37] Cabello A 2000 Phys. Rev. Lett. 85 5633Google Scholar
-
表 1 本文协议和其他协议比较
Table 1. Comparison between our protocols and the other protocols.
-
[1] Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149Google Scholar
[2] Chong S K, Hwang, T 2010 Opt. Commun. 283 1192Google Scholar
[3] Huang W, Su Q, Wu X, Li Y B, Sun L 2014 Int. J. Theor. Phys. 53 2891Google Scholar
[4] Shen D S, Ma W P, Wang L L 2014 Quantum Inf. Process. 13 2313Google Scholar
[5] He Y F, Ma W P 2015 Quantum Inf. Process. 14 3483Google Scholar
[6] He Y F, Ma W P 2017 Int. J. Quantum Inf. 3 1750018Google Scholar
[7] Yang Y G, Li B R, Li D, Zhou Y H, Shi W M 2019 Quantum Inf. Process. 18 322Google Scholar
[8] Zhou Y H, Wang M F, Shi W M, Yang Y G, Zhang J 2020 Quantum Inf. Process. 19 100Google Scholar
[9] Shi R H, Zhong H 2013 Quantum Inf. Process 12 921Google Scholar
[10] Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797Google Scholar
[11] Sun Z, Zhang C, Wang B H, Li Q, Long D Y 2013 Quantum Inf. Process. 12 3411Google Scholar
[12] 尹逊汝, 马文平, 申冬苏, 王丽丽 2013 62 170304Google Scholar
Yin X R, Ma W P, Shen D S, Wang L L 2013 Acta Phys. Sin. 62 170304Google Scholar
[13] Xu G B, Wen Q Y, Gao F, Qin S J 2014 Quantum Inf. Process. 13 2587Google Scholar
[14] Sun Z, Zhang C, Wang P, Yu J P, Zhang Y, Long D Y 2016 Int. J. Theor. Phys. 55 1920Google Scholar
[15] Sun Z, Yu J, Wang P 2016 Quantum Inf. Process. 15 373Google Scholar
[16] Cai T, Jiang M, Cao G 2018 Quantum Inf. Process. 17 103Google Scholar
[17] Lin S, Guo G D, Chen A M, Liu X F 2019 Quantum Inf. Process. 18 1Google Scholar
[18] Liu H N, Liang X Q, Jiang D H, Zhang Y H, Xu G B 2019 Quantum Inf. Process. 18 242Google Scholar
[19] Zhou N R, Zhu K N, Wang Y Q 2020 Int. J. Theor. Phys. 59 663Google Scholar
[20] Huang W, Wen Q Y, Liu B, Su Q, Gao F 2014 Quantum Inf. Process. 13 1651Google Scholar
[21] Cai B B, Guo G D, Lin S 2017 Int. J. Theor. Phys. 56 1039Google Scholar
[22] Min S Q, Chen H Y, Gong L H 2018 Int. J. Theor. Phys. 57 1811Google Scholar
[23] Wang S S, Xu G B, Liang X Q 2018 Int. J. Theor. Phys. 57 3716Google Scholar
[24] Zhao X Q, Zhou N R, Chen H Y, Gong L H 2019 Int. J. Theor. Phys. 58 436Google Scholar
[25] Liu H N, Liang X Q, Jiang D H, Zhang Y H, Xu G B 2019 Int. J. Theor. Phys. 58 1659Google Scholar
[26] Yin X R, Ma W P 2019 Int. J. Theor. Phys. 58 631Google Scholar
[27] Zhou Y H, Zhang J, Shi W M, Yang Y G 2020 Mod. Phys. Lett. B 4 2050083Google Scholar
[28] Wang W, Zhou B M, Zhang L 2020 Int. J. Theor. Phys. 59 1944Google Scholar
[29] Tang J, Shi L, Wei J H 2020 Mod. Phys. Lett. B 49 2050201Google Scholar
[30] Bouwmeester D, Pan J W, Daniell M, Weinfurte H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345Google Scholar
[31] 周南润, 宋汉冲, 龙黎华, 刘晔 2012 61 214203Google Scholar
Zhou N R, Chong S H, Gong L H, Liu Y 2012 Acta Phys. Sin. 61 214203Google Scholar
[32] Zhang Z J, Man Z X, Shi S H 2005 Int. J. Quantum Inf. 03 555Google Scholar
[33] Hwang T, Hwang C C, Li C M 2011 Phys. Scripta 83 045004Google Scholar
[34] Kao S H, Tsai C W, Tzonelih H 2011 Commun. Theor. Phys. 55 1007Google Scholar
[35] Cai Q Y 2006 Phys. Lett. A 351 23Google Scholar
[36] Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302Google Scholar
[37] Cabello A 2000 Phys. Rev. Lett. 85 5633Google Scholar
计量
- 文章访问数: 5757
- PDF下载量: 105
- 被引次数: 0