搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相外延层层浸渍组装金属-有机框架薄膜及其物理性能

王大为 谷志刚 张健

引用本文:
Citation:

液相外延层层浸渍组装金属-有机框架薄膜及其物理性能

王大为, 谷志刚, 张健

Liquid phase epitaxial layer by layer dipping assembly of metal-organic framework thin films and their physical property

Wang Da-Wei, Gu Zhi-Gang, Zhang Jian
PDF
HTML
导出引用
  • 金属-有机框架(MOF)作为一种通过配位键将金属节点和有机配体连接而成的新型无机-有机杂化多孔有序晶体材料, 因其具有比表面积大、稳定性好、结构多样以及功能可调等优点, 受到人们的广泛关注. MOF薄膜的制备和功能化拓展了其应用领域. 本文重点介绍了用液相外延层层浸渍法组装表面配位金属-有机框架薄膜(SURMOF), 并总结了部分SURMOF在光学、电学等方面的物理性能, 以及对SURMOF的应用前景进行了展望.
    Metal-organic framework (MOF) is a new kind of inorganic-organic hybrid porous ordered crystal material, which is connected by metal nodes and organic ligands through coordination bond. Because of its large specific surface area, high stability, diverse structure and adjustable function, MOF has received wide attention. The improvements in preparation and functionalization of MOF thin films expand their application fields. In this paper, the method for assembly of surface coordinated metal-organic framework thin films (SURMOF) by liquid phase expitaxial layer-by-layer dipping method is introduced, and the physical properties of some SURMOFs in optics, electricity and other aspects are summarized, and the application prospect of SURMOF is prospected as well.
      通信作者: 谷志刚, zggu@fjirsm.ac.cn
    • 基金项目: 国家级-国家自然科学基金(21872148)
      Corresponding author: Gu Zhi-Gang, zggu@fjirsm.ac.cn
    [1]

    Howarth A J, Liu Y Y, Li P, Li Z Y, Wang T C, Hupp J, Farha O K 2016 Nat. Rev. Mat. 1 15018Google Scholar

    [2]

    Zhang C, Wu B H, Ma M Q, Wang Z K, Xu Z K 2019 Chem. Soc. Rev. 48 3811Google Scholar

    [3]

    Wang X N, Zhang P, Kirchon A, Li J L, Chen W M, Zhao Y M, Li B, Zhou H C 2019 J. Am. Chem. Soc. 141 13654Google Scholar

    [4]

    Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C 2019 Coord. Chem. Rev. 398 27Google Scholar

    [5]

    Bag P P, Liao P Q, Zhang J P, Chen X M 2017 Acta Crystallogr., Sect. A: Found. Crystallogr. 73 C1267Google Scholar

    [6]

    Wang Y, Huang N Y, Zhang X W, He H, Huang R K, Ye Z M, Li Y, Zhou D D, Liao P Q, Chen X M, Zhang J P 2019 Angew. Chem. Int. Ed. 58 7692Google Scholar

    [7]

    Zhou H C, Long J R, Yaghi O M 2012 Chem. Rev. 112 673Google Scholar

    [8]

    Shen J Q, Liao P Q, Zhou D D, He C T, Wu J X, Zhang W X, Zhang J P, Chen X M 2017 J. Am. Chem. Soc. 139 1778Google Scholar

    [9]

    Xu Z L, Xiao G W, Li H F, Shen Y, Zhang J, Pan T, Chen X Y, Zheng B, Wu J S, Li S, Zhang W N, Huang W, Huo F W 2018 Adv. Funct. Mater. 28 1870242Google Scholar

    [10]

    Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q 2014 Chem. Soc. Rev. 43 4615Google Scholar

    [11]

    Zou L L, Kitta M, Hong J H, Suenaga K, Tsumori N, Liu Z, Xu Q 2019 Adv. Mater. 31 1900440Google Scholar

    [12]

    Gu Z G, Zhang J 2019 Coord. Chem. Rev. 378 513Google Scholar

    [13]

    Song X Y, Wang X Y, Li Y S, Zheng C Z, Zhang B W, Di C A, Li F, Jin C, Mi W B, Chen L, Hu W P 2020 Angew. Chem. Int. Ed. 59 1118Google Scholar

    [14]

    Hou J W, Sutrisna P D, Zhang Y T, Chen V 2016 Angew. Chem. Int. Ed. 55 3947Google Scholar

    [15]

    Pan L, Ji Z H, Yi X H, Zhu X J, Chen X X, Shang J, Liu G, Li R W 2015 Adv. Fun. Mater. 25 2677Google Scholar

    [16]

    Ma X J, Chai Y T, Li P, Wang B 2019 Acc. Chem. Res. 52 1461Google Scholar

    [17]

    Du M, Song D, Huang A M, Chen R X, Jin D, Rui K, Zhang C, Zhu J X, Huang W 2019 Angew. Chem. Int. Ed. 58 5307Google Scholar

    [18]

    Zhang Y Y, Feng X, Li H W, Chen Y F, Zhao J S, Wang S, Wang L, Wang B 2015 Angew. Chem. Int. Ed. 54 4259Google Scholar

    [19]

    Li W J, Feng J F, Lin Z J, Yang Y L, Yang Y, Wang X S, Gao S Y, Cao R 2016 Chem. Commun. 52 3951Google Scholar

    [20]

    Zhao W W, Peng J L, Wang W K, Liu S J, Zhao Q, Huang W 2018 Coord. Chem. Rev. 377 44Google Scholar

    [21]

    Zhuang J L, Terfort A, Wöll C 2015 Coord. Chem. Rev. 307 391Google Scholar

    [22]

    Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer R A, Woll C 2007 J. Am. Chem. Soc. 129 15118Google Scholar

    [23]

    Zacher D, Shekhah O, Wöll C, Fischer R A 2009 Chem. Soc. Rev. 38 1418Google Scholar

    [24]

    Arslan H K, Shekhah O, Wieland D C F, Paulus M, Sternemann C, Schroer M A, Tiemeyer S, Tolan M, Fischer R A, Wöll C 2011 J. Am. Chem. Soc. 133 8158Google Scholar

    [25]

    Liu B, Ma M Y, Zacher D, Betard A, Yusenko K, Metzler-Nolte N, Wöll C, Fischer R A 2011 J. Am. Chem. Soc. 133 1734Google Scholar

    [26]

    Shekhah O, Liu J, Fischer R A, Wöll C 2011 Chem. Soc. Rev. 40 1081Google Scholar

    [27]

    Drost M, Tu F, Berger L, Preischl C, Zhou W C, Gliemann H, Wöll C, Marbach H 2018 ACS Nano 12 3825Google Scholar

    [28]

    Liu B, Tu M, Zacher D, Fischer R A 2013 Adv. Funct. Mater. 23 3790Google Scholar

    [29]

    Best J P, Michler J, Liu J X, Wang Z B, Tsotsalas M, Maeder X, Rose S, Oberst V, Liu J X, Walheim S, Gliemann H, Weidler P G, Redel E, Wöll C 2015 Appl. Phys. Lett. 107 101902Google Scholar

    [30]

    Redel E, Wang Z B, Walheim S, Liu J X, Gliemann H, Wöll C 2013 Appl. Phys. Lett. 103 091903Google Scholar

    [31]

    Baroni N, Turshatov A, Oldenburg M, Busko D, Adams M, Haldar R, Welle A, Redel E, Wöll C, Richards B S, Howard I A 2017 Mater. Chem. Front. 1 1888Google Scholar

    [32]

    Frederick E, Shaw T W, Frith M G, Bernasek S L 2019 Mater. Chem. Front. 3 636Google Scholar

    [33]

    Gu Z G, Pfriem A, Hamsch S, Breitwieser H, Wohlgemuth J, Heinke L, Gliemann H, Wöll C 2015 Microporous Mesoporous Mater. 211 82Google Scholar

    [34]

    Tour J M, Jones L, Pearson D L, Lamba J J S, Burgin T P, Whitesides G M, Allara D L, Parikh A N, Atre S V 1995 J. Am. Chem. Soc. 117 9529Google Scholar

    [35]

    Gu Z G, Fu W Q, Wu X, Zhang J 2016 Chem. Commun. 52 772Google Scholar

    [36]

    Fu W Q, Liu M, Gu Z G, Chen S M, Zhang J 2016 Cryst. Growth Des. 16 5487Google Scholar

    [37]

    Müller K, Helfferich J, Zhao F, Verma R, Kanj A B, Meded V, Bléger D, Wenzel W, Heinke L 2018 Adv. Mater. 30 1706551Google Scholar

    [38]

    Liu J, Wächter T, Irmler A, Weidler P G, Gliemann H, Pauly F, Mugnaini V, Zharnikov M, Wöll C 2015 ACS Appl. Mater. & Interfaces. 7 9824Google Scholar

    [39]

    Oldenburg M, Turshatov A, Busko D, Jakoby M, Haldar R, Chen K, Emandi G, Senge M O, Wöll C, Hodgkiss J M, Richards B S, Howard I A 2018 Phys. Chem. Chem. Phys. 20 11564Google Scholar

    [40]

    Gu Z G, Chen S C, Fu W Q, Zheng Q D, Zhang J 2017 ACS Appl. Mater. & Interface 9 7259Google Scholar

    [41]

    Li D J, Gu Z G, Zhang J 2020 Chem. Sci. 11 1935Google Scholar

    [42]

    Baroni N, Turshatov A, Adams M, Dolgopolova E A, Schlisske S, Sosa G H, Wöll C, Shustova N B, Richards B S, Howard I A 2018 ACS Appl. Mater. & Interf. 10 25754Google Scholar

    [43]

    Gu Z G, Chen Z, Fu W Q, Wang F, Zhang J 2015 ACS Appl. Mater. & Interf. 7 28585Google Scholar

    [44]

    Oldenburg M, Turshatov A, Busko D, Wollgarten S, Adams M, Baroni N, Welle A, Redel E, Wöll C, Richards B S, Howard I A 2016 Adv. Mater. 28 8477Google Scholar

    [45]

    Gu Z G, Li D J, Zheng C, Kang Y, Wöll C, Zhang J 2017 Angew. Chem. Int. Ed. 56 6853Google Scholar

    [46]

    Chen D H, Haldar R, Neumeier B L, Fu Z H, Feldmann C, Wöll C, Redel E 2019 Adv. Funct. Mater. 29 1903086Google Scholar

    [47]

    Li W J, Watzele S, El-Sayed H A, Liang Y C, Kieslich G, Bandarenka A S, Rodewald K, Rieger B, Fischer R A 2019 J. Am. Chem. Soc. 141 5926Google Scholar

    [48]

    Lei S, Li Q H, Kang Y, Gu Z G, Zhang J 2019 Appl. Catal. B-Environ. 245 1Google Scholar

  • 图 1  MOF (顶排)和次级构筑单元(中排)以及配体(下排)的结构模型[1]

    Fig. 1.  Structural model of MOF (top row) and the representative secondary building units (middle row), as well as ligands (down row)[1]

    图 2  液相外延法层层组装制备SURMOF示意图[12]

    Fig. 2.  Schematic diagram of liquid phase epitaxial layer by layer assembly of SURMOF [12].

    图 3  机械液相外延层层浸渍法制备 SURMOF装置示意图(P0, 样品架的起始和最终位置; P1—P7, 浸泡溶液; 1, 聚四氟乙烯工作台; 2, 容器盖; 3, 夹持器; 4, 样品夹; 5, 样品; 6, 位置控制器; 7, 超声波清洗器; 8, 清洗池; 9, 容器盖的位置; 10, 泵和清洗容器; 11, 计算机)[33]

    Fig. 3.  Schematic diagram of SURMOF prepared by liquid phase epitaxy layer by layer dipping method (P0, starting and final position for the sample holder; P1− P7, containers for immersion solutions; 1, Teflon working table; 2, container lid; 3, gripper; 4, sample holder; 5, sample; 6, position controller; 7, ultrasonic bath; 8, shower; 9, parking position of container lid; 10, pump and solution bottle for showering; 11, computer)[33].

    图 4  在羟基和羧基修饰的基底上通过液相外延法逐层生长不同取向MOF膜的示意图[35]

    Fig. 4.  Schematic diagram of MOF grown on the hydroxyl and carboxyl-terminated substrate via liquid phase epitaxy layer by layer method[35]

    图 5  HKUST-1薄膜的SEM图像[36]

    Fig. 5.  SEM image of HKUST-1 thin film[36]

    图 6  (a)制备的OFET实物图; (b) HKUST-1薄膜修饰SiO2介电层界面的OFET结构示意图; (c)半导体聚合物PTB7-Th的化学结构; (d) SURMOF HKUST-1的制备示意图及HKUST-1结构图; (e) HKUST-1/SiO2/Si结构OFET器件的输出特性; (f) HKUST-1/SiO2/Si结构OFET器件的传输特性[40]

    Fig. 6.  (a) Sample diagram of field effect transistor (OFET); (b) sketch diagram of HKUST-1 film modified SiO2 dielectric layer in the OFETs; (c) structure of semiconductor polymer PTB7-Th; (d) schematic diagram of liquid phase epitaxy layer by layer preparation of HKUST-1 and the structure; (e) the output characteristics of HKUST-1/SiO2/Si based OFETs; (f) the transmission characteristics of HKUST-1/SiO2/Si based OFETs[40].

    图 7  (a)采用液相外延法将Ln(pdc)3逐层负载到SURMOF孔道的示意图; (b) Ln(pdc)3结构示意图; (c)紫外光(365 nm)照射石英玻璃生长的Ln(pdc)3@HKUST-1薄膜和混合型Ln(pdc)3@HKUST-1薄膜的照片; (d) Eu(pdc)3@HKUST-1, Tb(pdc)3@HKUST-1和Gd(pdc)3@HKUST-1薄膜的发射光谱; (e)红色、绿色、蓝色发光的Ln(pdc)3@HKUST-1薄膜以及混合白光发射薄膜的CIE色度坐标图[43]

    Fig. 7.  (a) Schematic diagram of Ln(pdc)3 encapsulated into SURMOF and grown in situ layer by layer using the liquid phase epitaxy method; (b) schematic diagram of Ln(pdc)3 structure; (c) photographs of Ln(pdc)3@HKUST-1 film on quartz glass under ultraviolet (365 nm) irradiation; (d) solid-phase photoluminescence emission spectra of Eu(pdc)3@HKUST-1, Tb(pdc)3@HKUST-1, Gd(pdc)3@HKUST-1 films; (e) CIE chromaticity coordinate chart of red, green, blue and wite emitting Ln(pdc)3@ HKUST-1 film[43].

    图 8  (a)硅衬底上发射-敏化-发射(A-B-A)异质结构的截面SEM图; (b)不同有机连接体组成的A型、B型SURMOF异质结连接示意图; (c) Zn-ADB (A)和Zn-(Pd-DCP)(B)制备的SURMOF以及由它们构成异质结的XRD衍射图; (d)三重激发态分子传递光子上转换的示意图; (e)发射光谱示意图[44]

    Fig. 8.  (a) SEM image of emission sensitization emission (A-B-A) heterostructure cross section on silicon substrate; (b) schematic diagram of A and B SURMOF heterojunction connection composed of different organic connectors; (c) the diffraction patterns of SURMOF prepared by Zn-ADB (A) and Zn-(Pd-DCP) (B); (d) the schematic diagram of photon upconversion of triplex excited state molecular transfer; (e) the schematic diagram of emission spectrum[44].

    图 9  (a) MOF模板法制备CDs示意图; (b)石英玻璃、G@HKUST-1-200薄膜以及合成过程中的中间体材料照片; (c) CD@HKUST-1-200薄膜在350 nm激发波长的荧光发射谱图; (d) G@HKUST-1薄膜、CD@HKUST-1-200薄膜和HKUST-1模板制备的CDs水溶液的开孔Z-扫描数据(点)以及532 nm激发波长下的理论拟合数据(实线)[45]

    Fig. 9.  (a) Schematic diagram of CDs prepared by MOF template method; (b) photos of the sample in the synthesis process; (c) photoluminescence of CD@HKUST-1-200 film; (d) open hole Z-scan data of CD@HKUST-1-200 film and HKUST-1 grown on quartz glass (point) and CDs aqueous solution made from G@HKUST-1 film with theoretical fitting data at 532 nm excitation wavelength[45]

    图 10  (a)采用液相外延层层组装法在硅基底上逐层生长取向CoFe-PBA薄膜的示意图; (b)薄膜XRD对比和(c) [100]取向CoFe-PBA薄膜的SEM图(插图是CoFe-PBA薄膜在Si衬底上的模型图); (d)扫描速率为2 mV/s的线性扫描伏安曲线(已经过内阻校正); ① CoFe2O4薄膜、② RuO2、③ CoFe2O4粉末、④ Fe-PBA薄膜、⑤ 泡沫镍-350; (e)为不同的电催化剂电流密度达到10 mA/cm2所需的过电位对比图; (f)塔费尔斜率对比图; (g)在1.5 V下的CoFe2O4薄膜和CoFe2O4粉末的电化学阻抗谱对比[48]

    Fig. 10.  (a) Schematic diagram of layer by layer growth of oriented CoFe-PBA thin film on silicon substrate by LPE LBL method; (b) XRD comparison and (c) SEM image of oriented CoFe-PBA thin film in [100] plane (illustration shows the microstructure of CoFe PBA film on Si substrate); (d) linear sweep voltammetry curve with 2 mV/s scanning rate (IR corrected) of the sample; (e) the over potential required of different electrocatalyst to reach 10 mA/cm2; (f) the comparison of Tafel slope; (g) the comparison of electrochemical impedance spectra of CoFe2O4 film and CoFe2O4 powder at 1.5 V[48]

    Baidu
  • [1]

    Howarth A J, Liu Y Y, Li P, Li Z Y, Wang T C, Hupp J, Farha O K 2016 Nat. Rev. Mat. 1 15018Google Scholar

    [2]

    Zhang C, Wu B H, Ma M Q, Wang Z K, Xu Z K 2019 Chem. Soc. Rev. 48 3811Google Scholar

    [3]

    Wang X N, Zhang P, Kirchon A, Li J L, Chen W M, Zhao Y M, Li B, Zhou H C 2019 J. Am. Chem. Soc. 141 13654Google Scholar

    [4]

    Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C 2019 Coord. Chem. Rev. 398 27Google Scholar

    [5]

    Bag P P, Liao P Q, Zhang J P, Chen X M 2017 Acta Crystallogr., Sect. A: Found. Crystallogr. 73 C1267Google Scholar

    [6]

    Wang Y, Huang N Y, Zhang X W, He H, Huang R K, Ye Z M, Li Y, Zhou D D, Liao P Q, Chen X M, Zhang J P 2019 Angew. Chem. Int. Ed. 58 7692Google Scholar

    [7]

    Zhou H C, Long J R, Yaghi O M 2012 Chem. Rev. 112 673Google Scholar

    [8]

    Shen J Q, Liao P Q, Zhou D D, He C T, Wu J X, Zhang W X, Zhang J P, Chen X M 2017 J. Am. Chem. Soc. 139 1778Google Scholar

    [9]

    Xu Z L, Xiao G W, Li H F, Shen Y, Zhang J, Pan T, Chen X Y, Zheng B, Wu J S, Li S, Zhang W N, Huang W, Huo F W 2018 Adv. Funct. Mater. 28 1870242Google Scholar

    [10]

    Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q 2014 Chem. Soc. Rev. 43 4615Google Scholar

    [11]

    Zou L L, Kitta M, Hong J H, Suenaga K, Tsumori N, Liu Z, Xu Q 2019 Adv. Mater. 31 1900440Google Scholar

    [12]

    Gu Z G, Zhang J 2019 Coord. Chem. Rev. 378 513Google Scholar

    [13]

    Song X Y, Wang X Y, Li Y S, Zheng C Z, Zhang B W, Di C A, Li F, Jin C, Mi W B, Chen L, Hu W P 2020 Angew. Chem. Int. Ed. 59 1118Google Scholar

    [14]

    Hou J W, Sutrisna P D, Zhang Y T, Chen V 2016 Angew. Chem. Int. Ed. 55 3947Google Scholar

    [15]

    Pan L, Ji Z H, Yi X H, Zhu X J, Chen X X, Shang J, Liu G, Li R W 2015 Adv. Fun. Mater. 25 2677Google Scholar

    [16]

    Ma X J, Chai Y T, Li P, Wang B 2019 Acc. Chem. Res. 52 1461Google Scholar

    [17]

    Du M, Song D, Huang A M, Chen R X, Jin D, Rui K, Zhang C, Zhu J X, Huang W 2019 Angew. Chem. Int. Ed. 58 5307Google Scholar

    [18]

    Zhang Y Y, Feng X, Li H W, Chen Y F, Zhao J S, Wang S, Wang L, Wang B 2015 Angew. Chem. Int. Ed. 54 4259Google Scholar

    [19]

    Li W J, Feng J F, Lin Z J, Yang Y L, Yang Y, Wang X S, Gao S Y, Cao R 2016 Chem. Commun. 52 3951Google Scholar

    [20]

    Zhao W W, Peng J L, Wang W K, Liu S J, Zhao Q, Huang W 2018 Coord. Chem. Rev. 377 44Google Scholar

    [21]

    Zhuang J L, Terfort A, Wöll C 2015 Coord. Chem. Rev. 307 391Google Scholar

    [22]

    Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer R A, Woll C 2007 J. Am. Chem. Soc. 129 15118Google Scholar

    [23]

    Zacher D, Shekhah O, Wöll C, Fischer R A 2009 Chem. Soc. Rev. 38 1418Google Scholar

    [24]

    Arslan H K, Shekhah O, Wieland D C F, Paulus M, Sternemann C, Schroer M A, Tiemeyer S, Tolan M, Fischer R A, Wöll C 2011 J. Am. Chem. Soc. 133 8158Google Scholar

    [25]

    Liu B, Ma M Y, Zacher D, Betard A, Yusenko K, Metzler-Nolte N, Wöll C, Fischer R A 2011 J. Am. Chem. Soc. 133 1734Google Scholar

    [26]

    Shekhah O, Liu J, Fischer R A, Wöll C 2011 Chem. Soc. Rev. 40 1081Google Scholar

    [27]

    Drost M, Tu F, Berger L, Preischl C, Zhou W C, Gliemann H, Wöll C, Marbach H 2018 ACS Nano 12 3825Google Scholar

    [28]

    Liu B, Tu M, Zacher D, Fischer R A 2013 Adv. Funct. Mater. 23 3790Google Scholar

    [29]

    Best J P, Michler J, Liu J X, Wang Z B, Tsotsalas M, Maeder X, Rose S, Oberst V, Liu J X, Walheim S, Gliemann H, Weidler P G, Redel E, Wöll C 2015 Appl. Phys. Lett. 107 101902Google Scholar

    [30]

    Redel E, Wang Z B, Walheim S, Liu J X, Gliemann H, Wöll C 2013 Appl. Phys. Lett. 103 091903Google Scholar

    [31]

    Baroni N, Turshatov A, Oldenburg M, Busko D, Adams M, Haldar R, Welle A, Redel E, Wöll C, Richards B S, Howard I A 2017 Mater. Chem. Front. 1 1888Google Scholar

    [32]

    Frederick E, Shaw T W, Frith M G, Bernasek S L 2019 Mater. Chem. Front. 3 636Google Scholar

    [33]

    Gu Z G, Pfriem A, Hamsch S, Breitwieser H, Wohlgemuth J, Heinke L, Gliemann H, Wöll C 2015 Microporous Mesoporous Mater. 211 82Google Scholar

    [34]

    Tour J M, Jones L, Pearson D L, Lamba J J S, Burgin T P, Whitesides G M, Allara D L, Parikh A N, Atre S V 1995 J. Am. Chem. Soc. 117 9529Google Scholar

    [35]

    Gu Z G, Fu W Q, Wu X, Zhang J 2016 Chem. Commun. 52 772Google Scholar

    [36]

    Fu W Q, Liu M, Gu Z G, Chen S M, Zhang J 2016 Cryst. Growth Des. 16 5487Google Scholar

    [37]

    Müller K, Helfferich J, Zhao F, Verma R, Kanj A B, Meded V, Bléger D, Wenzel W, Heinke L 2018 Adv. Mater. 30 1706551Google Scholar

    [38]

    Liu J, Wächter T, Irmler A, Weidler P G, Gliemann H, Pauly F, Mugnaini V, Zharnikov M, Wöll C 2015 ACS Appl. Mater. & Interfaces. 7 9824Google Scholar

    [39]

    Oldenburg M, Turshatov A, Busko D, Jakoby M, Haldar R, Chen K, Emandi G, Senge M O, Wöll C, Hodgkiss J M, Richards B S, Howard I A 2018 Phys. Chem. Chem. Phys. 20 11564Google Scholar

    [40]

    Gu Z G, Chen S C, Fu W Q, Zheng Q D, Zhang J 2017 ACS Appl. Mater. & Interface 9 7259Google Scholar

    [41]

    Li D J, Gu Z G, Zhang J 2020 Chem. Sci. 11 1935Google Scholar

    [42]

    Baroni N, Turshatov A, Adams M, Dolgopolova E A, Schlisske S, Sosa G H, Wöll C, Shustova N B, Richards B S, Howard I A 2018 ACS Appl. Mater. & Interf. 10 25754Google Scholar

    [43]

    Gu Z G, Chen Z, Fu W Q, Wang F, Zhang J 2015 ACS Appl. Mater. & Interf. 7 28585Google Scholar

    [44]

    Oldenburg M, Turshatov A, Busko D, Wollgarten S, Adams M, Baroni N, Welle A, Redel E, Wöll C, Richards B S, Howard I A 2016 Adv. Mater. 28 8477Google Scholar

    [45]

    Gu Z G, Li D J, Zheng C, Kang Y, Wöll C, Zhang J 2017 Angew. Chem. Int. Ed. 56 6853Google Scholar

    [46]

    Chen D H, Haldar R, Neumeier B L, Fu Z H, Feldmann C, Wöll C, Redel E 2019 Adv. Funct. Mater. 29 1903086Google Scholar

    [47]

    Li W J, Watzele S, El-Sayed H A, Liang Y C, Kieslich G, Bandarenka A S, Rodewald K, Rieger B, Fischer R A 2019 J. Am. Chem. Soc. 141 5926Google Scholar

    [48]

    Lei S, Li Q H, Kang Y, Gu Z G, Zhang J 2019 Appl. Catal. B-Environ. 245 1Google Scholar

  • [1] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能.  , 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [2] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能.  , 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [3] 孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文. 基于有效介质理论的物理性能计算模型的软件实现.  , 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [4] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究.  , 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [5] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响.  , 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [6] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究.  , 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [7] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理.  , 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [8] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化.  , 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [9] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响.  , 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [10] 章盛林, 谢建平, 方轶君, 金进生, 叶高翔. 液相基底温度对沉积银原子及其团簇凝聚过程的影响.  , 2007, 56(9): 5452-5457. doi: 10.7498/aps.56.5452
    [11] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响.  , 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [12] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程.  , 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [13] 蒋益明, 谢亨博, 郭 峰, 刘 平, 李 劲. 金属有机双层膜传质模型理论研究.  , 2005, 54(12): 5769-5773. doi: 10.7498/aps.54.5769
    [14] 刘元富, 韩建民, 张谷令, 王久丽, 陈光良, 李雪明, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究.  , 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [15] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象.  , 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [16] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能.  , 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [17] 齐红基, 易 葵, 贺洪波, 邵建达. 溅射粒子能量对金属Mo薄膜表面特性的影响.  , 2004, 53(12): 4398-4404. doi: 10.7498/aps.53.4398
    [18] 王玉霞, 郭震, 何海平, 曹颖, 汤洪高. 在Si(111)上用有机溶胶凝胶甩膜热解法制备(0001)定向的6H-SiC薄膜.  , 2001, 50(2): 256-261. doi: 10.7498/aps.50.256
    [19] 吴锋民, 施建青, 吴自勤. 高温下金属薄膜生长初期的模拟研究.  , 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强.  , 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  13972
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-04-01
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map