-
The lead halide perovskite nanocrystals (NCs) have become more ideal luminescent materials due to the excellent properties such as narrow emission linewidth, photoluminescence quantum yield (PLQY), adjustable spectrum and facile preparation in comparison with traditional II-VI or III-V group semiconductor NCs. Until now, the external quantum efficiency (EQE) of light-emitting diode (LED) devices using perovskite NCs as emitting layers, has reached > 20%. This optical performance is close to that of the commercially available organic LED, which shows their great potential applications in solid state lighting and panel displaying. However, when perovskite NCs suffer light, heat and polar solvent, they exhibit the poor stability owing to the intrinsic ion properties of perovskite, and highly dynamic interface between NCs and ligands as well as the abundant defects on the surface of NCs. Therefore, how to elevate their stability is a key and urgent problem. In this review, three methods to improve the stability of NCs are summarized: 1) In situ surface passivation with tight-binding or protonation-free sole ligands such as oleic acid (OA), oleamine (OAM), dodecyl benzene sulfonic acid, octylphosphonic acid, sulfobetaines, lecithin and two ligands such as 2-hexyldecanoic acid/OAM, bis-(2,2,4-trimethylpentyl)phosphinic acid/OAM as well as three ligands such as OA/OAM/Al(NO3)3·9H2O, OA/OAM/tris(diethylamino)phosphine); the postsynthetic ligand exchange or passivation with 1-tetradecyl-3-methylimidazolium bromide, 2-aminoethanethiol, silver-trioctylphosphine complex and n-dodecylammonium thiocyanate; 2) the doping of Cs+ by FA+, Na+ and the doping of Pb2+ by Zn2+, Mn2+, Cd2+, Sr2+, Sb3+ in perovskite NCs; 3) the surface coating with inorganic oxides (SiO2, ZrO2, Al2O3, NiOx), inorganic salts (NaNO3, NH4Br, PbSO4, NaBr, RbBr, PbBr(OH)), porous materials (mesoporous silica, zeolite-Y, lead-based metal-organic frameworks), polymer materials (polystyrene, poly(styrene-ethylene-butylene-styrene, poly(laurylmethacrylate), poly(maleic anhydride-alt-1-octadecene), polyimide, poly(n-butyl methacrylate-co-2-(methacryloyloxy)ethyl-sulfobetaine)). Besides, we make some suggestions to further improve the stability of NCs as follows: 1) Developing the surface ligands with good dispersity and multi-coordination groups; 2) theoretically studying the influence of ion doping on the structure and stability; 3) realizing the stable and conductive metal oxides shell for uniform and compact encapsulation of NCs core. In a word, these conventional methods can enhance the stability of NCs to a certain extent, which fail to meet the requirements for practical application, so more efforts will be needed in the future.
-
Keywords:
- perovskite /
- nanocrystals /
- luminescence /
- surface modification /
- stability
[1] Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352
Google Scholar
[2] Quan L, Rand B, Friend R, Mhaisalkar S, Lee T, Sargent E 2019 Chem. Rev. 119 7444
Google Scholar
[3] Levchuk I, Osvet A, Tang X, Brandl M, Perea J, Hoegl F, Matt G, Hock R, Batentschuk M, Brabec C 2017 Nano Lett. 17 2765
Google Scholar
[4] Lee T 2019 Adv. Mater. 31 1905077
Google Scholar
[5] Smock S, Williams T, Brutchey R 2018 Angew. Chem. Int. Ed. 57 11711
Google Scholar
[6] Møller C 1958 Nature 182 1436
[7] Weber D 1978 Zeitschrift fur Naturforschung B 33 862
Google Scholar
[8] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 68 158504
Google Scholar
Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504
Google Scholar
[9] Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, Peng X 2020 Nat. Commun. 11 937
Google Scholar
[10] Reiss P, Carriere M, Lincheneau C, Vaure L, Tamang S 2016 Chem. Rev. 116 10731
Google Scholar
[11] Kumar S, Jagielski J, Kallikounis N, Kim Y, Wolf C, Jenny F, Tian T, Hofer C, Chiu Y, Stark W, Lee T, Shih C 2017 Nano Lett. 17 5277
Google Scholar
[12] He J, Chen H, Chen H, Wang Y, Wu S, Dong Y 2017 Opt. Express 25 12915
Google Scholar
[13] Won Y, Cho O, Kim T, Chung D, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Science 575 634
[14] Yu D, Cao F, Gao Y, Xiong Y, Zeng H 2018 Adv. Funct. Mater. 28 1800248
Google Scholar
[15] Akkerman Q, Raino G, Kovalenko M, Manna L 2018 Nat. Mater. 17 394
Google Scholar
[16] Zu Y, Dai J, Li L, Yuan F, Chen X, Feng Z, Li K, Song X, Yun F, Yu Y, Jiao B, Dong H, Hou X, Ju M, Wu Z 2019 J. Mater. Chem. A 7 26116
Google Scholar
[17] Lv W, Li L, Xu M, Hong J, Tang X, Xu L, Wu Y, Zhu R, Chen R, Huang W 2019 Adv. Mater. 31 1900682
Google Scholar
[18] 段聪聪, 程露, 殷垚, 朱琳 2019 68 158503
Google Scholar
Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503
Google Scholar
[19] 韦祎, 陈叶青, 程子泳, 林君 2018 中国科学: 化学 48 771
Google Scholar
Wei Y, Chen Y Q, Cheng Z R, Lin J 2018 Sci. Sin. Chim. 48 771
Google Scholar
[20] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970
Google Scholar
[21] 谢启飞, 王新中, 李玥, 马艳红 2018 深圳信息职业技术学院学报 16 56
Google Scholar
Xie Q F, Wang X Z, Li Y, Ma Y H 2018 Journal of Shenzhen Institute of information tecnology 16 56
Google Scholar
[22] 王恩胜, 余丽萍, 廉世勋, 周文理 2019 材料导报 33 777
Google Scholar
Wang E S, Yu L P, Lian S X, Zhou W L 2019 Materials Reports 33 777
Google Scholar
[23] 徐妍, 曹蒙蒙, 夏超, 李会利 2019 聊城大学学报 32 69
Xu Y, Cao M M, Xia C, Li H L 2019 Journal of Liaocheng University 32 69
[24] Krieg F, Ochsenbein S, Yakunin, S, Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C, Infante I, Kovalenko M 2018 ACS Energy Lett. 33 641
[25] Liu F, Zhang Y, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373
Google Scholar
[26] Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610
Google Scholar
[27] Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173
[28] Wang C, Chesman A, Jasieniak J 2017 Chem. Commun. 53 232
Google Scholar
[29] Xu K, Allen A, Luo B, Vickers E, Wang Q, Hollingsworth W, Ayzner A, Li X, Zhang J 2019 J. Phys. Chem. Lett. 10 4409
Google Scholar
[30] Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach A, Yang X 2019 Nano Lett. 19 6315
Google Scholar
[31] Yassitepe E, Yang Z, Voznyy O, Kim Y, Walters G, Castañeda J, Kanjanaboos P, Yuan M, Gong X, Fan F, Pan J, Hoogland S, Comin R, Bakr O, Padilha L, Nogueira A, Sargent E 2016 Adv. Funct. Mater. 26 8757
Google Scholar
[32] Tan Y, Zou Y, Wu L, Huang Q, Yang D, Chen M, Ban M, Wu C, Wu T, Bai S, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 3784
Google Scholar
[33] Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U, Prato M, Almeida G, Infante I, Manna L 2019 ACS Energy Lett. 4 819
Google Scholar
[34] Yang D, Li X, Zhou W, Zhang S, Meng C, Wu Y, Wang Y, Zeng H 2019 Adv. Mater. 1900767
Google Scholar
[35] Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu L, Wang L, Li Y, Zhang X, Zhang Q 2019 Nano Lett. 19 4151
Google Scholar
[36] Krieg F, Ong Q, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent M, Krumeich F, Bodnarchuk M, Shorubalko I, Stellacci F, Kovalenko M 2019 J. Am. Chem. Soc. 141 19839
Google Scholar
[37] Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X, Wu Z 2020 ACS Appl. Mater. Interfaces 12 2835
Google Scholar
[38] Koscher B, Swabeck J, Bronstein N, Alivisatos A 2017 J. Am. Chem. Soc. 139 6566
Google Scholar
[39] Ahmed T, Seth S, Samanta A 2018 Chem. Mater. 30 3633
Google Scholar
[40] Zhao Y, Yang R, Wan W, Jing X, Wen T, Ye S 2020 Chem. Eng. J.
Google Scholar
[41] Bi C, Kershaw S, Rogach A, Tian J 2019 Adv. Funct. Mater. 29 1902446
Google Scholar
[42] Li H, Qian Y, Xing X, Zhu J, Huang X, Jing Q, Zhang W, Zhang C, Lu Z 2018 J. Phys. Chem. C 122 12994
Google Scholar
[43] Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen W, Yao K, Wei M, Zhou C, Song K, Zhang B, Lin Y, Hedhili M, Wehbe N, Han Y, Sun H, Lu Z, Anthopoulos T, Mohammed O, Sargent E, Liao L, Bakr O 2020 ACS Energy Lett. 5 793
Google Scholar
[44] Zhou Y, Chen J, Bakr O, Sun H 2018 Chem. Mater. 30 6589
Google Scholar
[45] Xu L, Yuan S, Zeng H, Song J 2019 Materials Today Nano 6 100036
Google Scholar
[46] Protesescu L, Yakunin S, Kumar S, Bar J, Bertolotti F, Masciocchi N, Guagliardi A, Grotevent M, Shorubalko I, Bodnarchuk M, Shih C, Kovalenko M 2017 ACS Nano 11 3119
Google Scholar
[47] Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X 2019 Chem. Mater. 31 3917
Google Scholar
[48] Shen X, Zhang Y, Kershaw S, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W, Rogach A 2019 Nano Lett. 19 1552
Google Scholar
[49] Mir W, Swarnkar A, Nag A 2019 Nanoscale 11 4278
Google Scholar
[50] Mondal N, De A, Samanta A 2019 ACS Energy Lett. 4 32
Google Scholar
[51] Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069
Google Scholar
[52] Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V, Wang S, Zhang Y, Yu W 2019 J. Phys. Chem. Lett. 10 1750
Google Scholar
[53] Moon H, Lee C, Lee W, Kim J, Chae H 2019 Adv. Mater. 31 1804294
Google Scholar
[54] Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 405
Google Scholar
[55] Liu H, Tan Y, Cao M, Hu H, Wu L, Yu X, Wang L, Sun B, Zhang Q 2019 ACS Nano 13 5366
Google Scholar
[56] Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L 2020 Nat. Commun. 11 31
Google Scholar
[57] Zhou W, Zhao Y, Wang E, Li Q, Lou S, Wang J, Li X, Lian Q, Xie Q, Zhang R, Zeng H 2020 J. Phys. Chem. Lett. 11 3159
Google Scholar
[58] Zheng W, Wan Q, Zhang Q, Liu M, Zhang C, Wang B, Kong L, Li L 2020 Nanoscale 12 8711
Google Scholar
[59] Wang S, Bi C, Yuan J, Zhang L, Tian J 2018 ACS Energy Lett. 3 245
Google Scholar
[60] Li Z, Hu Q, Tan Z, Yang Y, Leng M, Liu X, Ge C, Niu G, Tang J 2018 ACS Appl. Mater. Interfaces 10 43915
Google Scholar
[61] Wang B, Zhang C, Huang S, Li Z, Kong L, Jin L, Wang J, Wu K, Li L 2018 ACS Appl. Mater. Interfaces 10 23303
Google Scholar
[62] Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J 2019 ACS Appl. Mater. Interfaces 11 24241
Google Scholar
[63] Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387
Google Scholar
[64] Lou S, Xuan T, Yu C, Cao M, Xia C, Wang J, Li H 2017 J Mater. Chem. C 5 7431
Google Scholar
[65] Ravi V, Scheidt R, Nag A, Kuno M, Kamat P 2018 ACS Energy Lett. 3 1049
Google Scholar
[66] Dirin D, Benin B, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M 2019 ACS Nano 13 11642
Google Scholar
[67] Liu K, Liu Q, Yang D, Liang Y, Sui L, Wei J, Xue G, Zhao W, Wu X, Dong L, Shan C 2020 Light.: Sci. Appl. 9 44
Google Scholar
[68] Raja S, Bekenstein Y, Koc M, Fischer S, Zhang D, Lin L, Ritchie R, Yang P, Alivisatos A 2016 ACS Appl. Mater. Interfaces 8 35523
Google Scholar
[69] Wu H, Wang S, Cao F, Zhou J, Wu Q, Wang H, Li X, Yin L, Yang X 2019 Chem. Mater. 31 1936
Google Scholar
[70] Zhang Y, Zhao Y, Wu D, Xue J, Qiu Y, Liao M, Pei Q, Goorsky M, He X 2019 Adv. Mater. 31 1902928
Google Scholar
[71] Zhang J, Jiang P, Wang Y, Liu X, Ma J, Tu G 2020 ACS Appl. Mater. Interfaces 12 3080
Google Scholar
[72] Kim H, Hight-Huf N, Kang J, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward R, Emrick T 2020 Angew. Chem. Int. Ed. 59 1
Google Scholar
[73] Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu S 2016 Angew. Chem. Int. Ed. 55 7924
Google Scholar
[74] Sun J, Rabouw F, Yang X, Huang X, Jing X, Ye S, Zhang Q 2017 Adv. Funct. Mater. 27 1704371
Google Scholar
[75] Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L 2017 Nat. Commun. 8 1138
Google Scholar
[76] Liang X, Chen M, Wang Q, Guo S, Yang H 2019 Angew. Chem. Int. Ed. 58 2799
Google Scholar
[77] He Y, Yoon Y, Harn Y, Biesold-McGee G, Liang S, Lin C, Tsukruk V, Thadhani N, Kang Z, Lin Z 2019 Sci. Adv. 5 4424
Google Scholar
[78] You C, Li F, Lin L, Lin J, Chen Q, Radjenovic P, Tian Z, Li J 2020 Nano Energy 71 104554
Google Scholar
-
图 1 胶体铅卤钙钛矿NCs (a) APbX3钙钛矿结构, 具有三维共角八面体, 左侧为立方结构(MAPbX3, FAPbX3; 显示了两个晶胞), 右侧为正交结构(CsPbX3); (b)单个立方形CsPbX3 NCs大角度环形暗场扫描透射电子显微照片, 边缘长度为15 nm; (c)高发光胶体NCs的照片, 从左至右, CsPbBr3的发射峰为520 nm, CsPb(Cl/Br)3的发射峰为450 nm, FAPb(Br/I)3的发射峰为640 nm[15]
Fig. 1. Colloidal lead halide perovskite NCs: (a) The APbX3 perovskite structure with 3D-corner-sharing octahedra. (Cubic (MAPbX3, FAPbX3; two unit cells shown) on the left and orthorhombic (CsPbX3) on the right); (b) high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) of a single, cube-shaped CsPbBr3 NCs, with 15 nm edge length; (c) photograph of highly luminescent colloidal NCs, from left to right, CsPbBr3 with emission peak at 520 nm, CsPb(Cl/Br)3 emitting at 450 nm and FAPb(Br/I)3 emitting at 640 nm)[15].
图 2 磺酸基团的理论钝化效应 (a) CsPbBr3存在VBr 的价带最大值和导带最小值的电子DOS曲线; (b)CsPbBr3存在VBr 的电子离域结果; (c)磺酸基团钝化CsPbBr3中VBr后的价带最大值和导带最小值的电子DOS曲线价带最大值和导带最小值的电子DOS曲线; (d) 磺酸基团钝化CsPbBr3中VBr后的电子离域结果[34]
Fig. 2. Theoretical sulfonate passivation effect: (a) Electronic DOS curves of valence band maximum (VBM) and conduction band minimum (CBM) of CsPbBr3 with VBr; (b) electron localization function results of CsPbBr3 with VBr; (c) electronic DOS curves of valence band maximum (VBM) and conduction band minimum (CBM) of CsPbBr3 with VBr passivated by the sulfonate group; (d) electron localization function results of CsPbBr3 with VBr passivated by the sulfonate group[34].
图 9 分别以星形P4 VP-b-PtBA-b-PS和P4 VP-b-PtBA-b-PEO为纳米反应器逐步合成PS包覆MAPbBr3/SiO2核/壳NCs和PEO包覆MAPbBr3/SiO2核/壳NCs的路线. CD表示环糊精; BMP表示2-溴–2-甲基丙酸盐; TOABr表示四辛基溴化铵[77]
Fig. 9. Stepwise representation of the synthetic route to PS-capped MAPbBr3/SiO2 core/shell NCs and PEO-capped MAPbBr3/SiO2 core/shell NCs by exploiting star-like P4 VP-b-PtBA-b-PS and P4 VP-b-PtBA-b-PEO as nanoreactors, respectively. CD, cyclodextrin; BMP, 2-bromo-2-methylpropionate; and TOABr, tetraoctylammonium bromide[77].
-
[1] Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352
Google Scholar
[2] Quan L, Rand B, Friend R, Mhaisalkar S, Lee T, Sargent E 2019 Chem. Rev. 119 7444
Google Scholar
[3] Levchuk I, Osvet A, Tang X, Brandl M, Perea J, Hoegl F, Matt G, Hock R, Batentschuk M, Brabec C 2017 Nano Lett. 17 2765
Google Scholar
[4] Lee T 2019 Adv. Mater. 31 1905077
Google Scholar
[5] Smock S, Williams T, Brutchey R 2018 Angew. Chem. Int. Ed. 57 11711
Google Scholar
[6] Møller C 1958 Nature 182 1436
[7] Weber D 1978 Zeitschrift fur Naturforschung B 33 862
Google Scholar
[8] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 68 158504
Google Scholar
Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504
Google Scholar
[9] Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, Peng X 2020 Nat. Commun. 11 937
Google Scholar
[10] Reiss P, Carriere M, Lincheneau C, Vaure L, Tamang S 2016 Chem. Rev. 116 10731
Google Scholar
[11] Kumar S, Jagielski J, Kallikounis N, Kim Y, Wolf C, Jenny F, Tian T, Hofer C, Chiu Y, Stark W, Lee T, Shih C 2017 Nano Lett. 17 5277
Google Scholar
[12] He J, Chen H, Chen H, Wang Y, Wu S, Dong Y 2017 Opt. Express 25 12915
Google Scholar
[13] Won Y, Cho O, Kim T, Chung D, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Science 575 634
[14] Yu D, Cao F, Gao Y, Xiong Y, Zeng H 2018 Adv. Funct. Mater. 28 1800248
Google Scholar
[15] Akkerman Q, Raino G, Kovalenko M, Manna L 2018 Nat. Mater. 17 394
Google Scholar
[16] Zu Y, Dai J, Li L, Yuan F, Chen X, Feng Z, Li K, Song X, Yun F, Yu Y, Jiao B, Dong H, Hou X, Ju M, Wu Z 2019 J. Mater. Chem. A 7 26116
Google Scholar
[17] Lv W, Li L, Xu M, Hong J, Tang X, Xu L, Wu Y, Zhu R, Chen R, Huang W 2019 Adv. Mater. 31 1900682
Google Scholar
[18] 段聪聪, 程露, 殷垚, 朱琳 2019 68 158503
Google Scholar
Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503
Google Scholar
[19] 韦祎, 陈叶青, 程子泳, 林君 2018 中国科学: 化学 48 771
Google Scholar
Wei Y, Chen Y Q, Cheng Z R, Lin J 2018 Sci. Sin. Chim. 48 771
Google Scholar
[20] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970
Google Scholar
[21] 谢启飞, 王新中, 李玥, 马艳红 2018 深圳信息职业技术学院学报 16 56
Google Scholar
Xie Q F, Wang X Z, Li Y, Ma Y H 2018 Journal of Shenzhen Institute of information tecnology 16 56
Google Scholar
[22] 王恩胜, 余丽萍, 廉世勋, 周文理 2019 材料导报 33 777
Google Scholar
Wang E S, Yu L P, Lian S X, Zhou W L 2019 Materials Reports 33 777
Google Scholar
[23] 徐妍, 曹蒙蒙, 夏超, 李会利 2019 聊城大学学报 32 69
Xu Y, Cao M M, Xia C, Li H L 2019 Journal of Liaocheng University 32 69
[24] Krieg F, Ochsenbein S, Yakunin, S, Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C, Infante I, Kovalenko M 2018 ACS Energy Lett. 33 641
[25] Liu F, Zhang Y, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373
Google Scholar
[26] Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610
Google Scholar
[27] Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173
[28] Wang C, Chesman A, Jasieniak J 2017 Chem. Commun. 53 232
Google Scholar
[29] Xu K, Allen A, Luo B, Vickers E, Wang Q, Hollingsworth W, Ayzner A, Li X, Zhang J 2019 J. Phys. Chem. Lett. 10 4409
Google Scholar
[30] Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach A, Yang X 2019 Nano Lett. 19 6315
Google Scholar
[31] Yassitepe E, Yang Z, Voznyy O, Kim Y, Walters G, Castañeda J, Kanjanaboos P, Yuan M, Gong X, Fan F, Pan J, Hoogland S, Comin R, Bakr O, Padilha L, Nogueira A, Sargent E 2016 Adv. Funct. Mater. 26 8757
Google Scholar
[32] Tan Y, Zou Y, Wu L, Huang Q, Yang D, Chen M, Ban M, Wu C, Wu T, Bai S, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 3784
Google Scholar
[33] Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U, Prato M, Almeida G, Infante I, Manna L 2019 ACS Energy Lett. 4 819
Google Scholar
[34] Yang D, Li X, Zhou W, Zhang S, Meng C, Wu Y, Wang Y, Zeng H 2019 Adv. Mater. 1900767
Google Scholar
[35] Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu L, Wang L, Li Y, Zhang X, Zhang Q 2019 Nano Lett. 19 4151
Google Scholar
[36] Krieg F, Ong Q, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent M, Krumeich F, Bodnarchuk M, Shorubalko I, Stellacci F, Kovalenko M 2019 J. Am. Chem. Soc. 141 19839
Google Scholar
[37] Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X, Wu Z 2020 ACS Appl. Mater. Interfaces 12 2835
Google Scholar
[38] Koscher B, Swabeck J, Bronstein N, Alivisatos A 2017 J. Am. Chem. Soc. 139 6566
Google Scholar
[39] Ahmed T, Seth S, Samanta A 2018 Chem. Mater. 30 3633
Google Scholar
[40] Zhao Y, Yang R, Wan W, Jing X, Wen T, Ye S 2020 Chem. Eng. J.
Google Scholar
[41] Bi C, Kershaw S, Rogach A, Tian J 2019 Adv. Funct. Mater. 29 1902446
Google Scholar
[42] Li H, Qian Y, Xing X, Zhu J, Huang X, Jing Q, Zhang W, Zhang C, Lu Z 2018 J. Phys. Chem. C 122 12994
Google Scholar
[43] Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen W, Yao K, Wei M, Zhou C, Song K, Zhang B, Lin Y, Hedhili M, Wehbe N, Han Y, Sun H, Lu Z, Anthopoulos T, Mohammed O, Sargent E, Liao L, Bakr O 2020 ACS Energy Lett. 5 793
Google Scholar
[44] Zhou Y, Chen J, Bakr O, Sun H 2018 Chem. Mater. 30 6589
Google Scholar
[45] Xu L, Yuan S, Zeng H, Song J 2019 Materials Today Nano 6 100036
Google Scholar
[46] Protesescu L, Yakunin S, Kumar S, Bar J, Bertolotti F, Masciocchi N, Guagliardi A, Grotevent M, Shorubalko I, Bodnarchuk M, Shih C, Kovalenko M 2017 ACS Nano 11 3119
Google Scholar
[47] Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X 2019 Chem. Mater. 31 3917
Google Scholar
[48] Shen X, Zhang Y, Kershaw S, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W, Rogach A 2019 Nano Lett. 19 1552
Google Scholar
[49] Mir W, Swarnkar A, Nag A 2019 Nanoscale 11 4278
Google Scholar
[50] Mondal N, De A, Samanta A 2019 ACS Energy Lett. 4 32
Google Scholar
[51] Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069
Google Scholar
[52] Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V, Wang S, Zhang Y, Yu W 2019 J. Phys. Chem. Lett. 10 1750
Google Scholar
[53] Moon H, Lee C, Lee W, Kim J, Chae H 2019 Adv. Mater. 31 1804294
Google Scholar
[54] Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 405
Google Scholar
[55] Liu H, Tan Y, Cao M, Hu H, Wu L, Yu X, Wang L, Sun B, Zhang Q 2019 ACS Nano 13 5366
Google Scholar
[56] Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L 2020 Nat. Commun. 11 31
Google Scholar
[57] Zhou W, Zhao Y, Wang E, Li Q, Lou S, Wang J, Li X, Lian Q, Xie Q, Zhang R, Zeng H 2020 J. Phys. Chem. Lett. 11 3159
Google Scholar
[58] Zheng W, Wan Q, Zhang Q, Liu M, Zhang C, Wang B, Kong L, Li L 2020 Nanoscale 12 8711
Google Scholar
[59] Wang S, Bi C, Yuan J, Zhang L, Tian J 2018 ACS Energy Lett. 3 245
Google Scholar
[60] Li Z, Hu Q, Tan Z, Yang Y, Leng M, Liu X, Ge C, Niu G, Tang J 2018 ACS Appl. Mater. Interfaces 10 43915
Google Scholar
[61] Wang B, Zhang C, Huang S, Li Z, Kong L, Jin L, Wang J, Wu K, Li L 2018 ACS Appl. Mater. Interfaces 10 23303
Google Scholar
[62] Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J 2019 ACS Appl. Mater. Interfaces 11 24241
Google Scholar
[63] Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387
Google Scholar
[64] Lou S, Xuan T, Yu C, Cao M, Xia C, Wang J, Li H 2017 J Mater. Chem. C 5 7431
Google Scholar
[65] Ravi V, Scheidt R, Nag A, Kuno M, Kamat P 2018 ACS Energy Lett. 3 1049
Google Scholar
[66] Dirin D, Benin B, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M 2019 ACS Nano 13 11642
Google Scholar
[67] Liu K, Liu Q, Yang D, Liang Y, Sui L, Wei J, Xue G, Zhao W, Wu X, Dong L, Shan C 2020 Light.: Sci. Appl. 9 44
Google Scholar
[68] Raja S, Bekenstein Y, Koc M, Fischer S, Zhang D, Lin L, Ritchie R, Yang P, Alivisatos A 2016 ACS Appl. Mater. Interfaces 8 35523
Google Scholar
[69] Wu H, Wang S, Cao F, Zhou J, Wu Q, Wang H, Li X, Yin L, Yang X 2019 Chem. Mater. 31 1936
Google Scholar
[70] Zhang Y, Zhao Y, Wu D, Xue J, Qiu Y, Liao M, Pei Q, Goorsky M, He X 2019 Adv. Mater. 31 1902928
Google Scholar
[71] Zhang J, Jiang P, Wang Y, Liu X, Ma J, Tu G 2020 ACS Appl. Mater. Interfaces 12 3080
Google Scholar
[72] Kim H, Hight-Huf N, Kang J, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward R, Emrick T 2020 Angew. Chem. Int. Ed. 59 1
Google Scholar
[73] Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu S 2016 Angew. Chem. Int. Ed. 55 7924
Google Scholar
[74] Sun J, Rabouw F, Yang X, Huang X, Jing X, Ye S, Zhang Q 2017 Adv. Funct. Mater. 27 1704371
Google Scholar
[75] Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L 2017 Nat. Commun. 8 1138
Google Scholar
[76] Liang X, Chen M, Wang Q, Guo S, Yang H 2019 Angew. Chem. Int. Ed. 58 2799
Google Scholar
[77] He Y, Yoon Y, Harn Y, Biesold-McGee G, Liang S, Lin C, Tsukruk V, Thadhani N, Kang Z, Lin Z 2019 Sci. Adv. 5 4424
Google Scholar
[78] You C, Li F, Lin L, Lin J, Chen Q, Radjenovic P, Tian Z, Li J 2020 Nano Energy 71 104554
Google Scholar
计量
- 文章访问数: 14340
- PDF下载量: 567
- 被引次数: 0