搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Verwey相变处Fe3O4的结构、磁性和电输运特性

刘祥 米文博

引用本文:
Citation:

Verwey相变处Fe3O4的结构、磁性和电输运特性

刘祥, 米文博

Structure, magnetic and transport properties of Fe3O4 near verwey transition

Liu Xiang, Mi Wen-Bo
PDF
HTML
导出引用
  • 作为典型的金属–绝缘体转变, Fe3O4的Verwey相变蕴涵的丰富物理现象与微观机制, 因而受到了人们的广泛关注. 在Verwey相变处, Fe3O4的晶体结构、电子结构以及磁各向异性等均发生转变, 但其磁基态并未发生改变. 与其他强关联体系相比, Fe3O4的Verwey相变不需要考虑磁交换耦合作用的变化, 有利于揭示强关联体系中金属–绝缘体转变的物理本质. 本文从晶体结构、电荷有序、电输运特性、磁性和铁电特性等方面简要地介绍了Fe3O4的Verwey相变的研究历史和现状.
    As the first known metal-insulator transition, Verwey transition of Fe3O4 attracts much attention due to its fascinating physics. With the decreasing temperature across Verwey temperature, Fe3O4 undergoes the transition of lattice distortion, charge ordering, electricity, magnetic anisotropy, etc, but the magnetic ground state keeps the ferrimagnetism. The comprehension of the underlying physics in Verwey transition facilitates the understanding of metal–insulator transition in other strongly-correlated systems. Nevertheless, the mechanism of Verwey transition is still debated after the first glimpse of Verwey transition. In this paper, we summarize the research history and current status of Verwey transition in Fe3O4. The investigations of lattice structure, charge ordering, electronic transport, magnetic and ferroelectric properties of Fe3O4 across Verwey transition are reviewed. Finally, the summary and outlook are given.
      通信作者: 米文博, miwenbo@tju.edu.cn
      Corresponding author: Mi Wen-Bo, miwenbo@tju.edu.cn
    [1]

    Verwey E J W 1939 Nature 144 327

    [2]

    Renger K 1913 Ph. D. Dissertation (Zürich: Swiss Federal Institute of Technology Zürich)

    [3]

    Parks G S, Kelly K K 1926 J. Phys. Chem. 30 47Google Scholar

    [4]

    Millar R W 1929 J. Am. Chem. Soc. 51 215Google Scholar

    [5]

    Okamura T 1932 Sci. Rep. Tohoku Imp. Univ. 21 231

    [6]

    Ellefson B S, Taylor N W 1934 J. Chem. Phys. 2 58Google Scholar

    [7]

    Weiss P, Forrer R 1929 Ann. Phys. 12 279

    [8]

    Bragg W H 1915 Philos. Mag. 30 305Google Scholar

    [9]

    Bragg W H and Brown G B 1926 Z. Kristallogr. 63 122

    [10]

    Claassen A 1926 Proc. Phys. Soc. 38 482

    [11]

    Néel L 1948 Ann. Phys. 3 137

    [12]

    Verwey E J W, Heilmann E L 1948 J. Chem. Phys. 16 1091Google Scholar

    [13]

    Verwey E J W, Haayman P W, Romeijn F C 1947 J. Chem. Phys. 15 181Google Scholar

    [14]

    Westrum E F, Grønvold F 1969 J. Chem. Thermodyn. 1 543Google Scholar

    [15]

    Cullen J R, Callen E R 1971 Solid State Commun. 9 1041Google Scholar

    [16]

    Evans B J, Westrum E F 1972 Phys. Rev. B 5 3791Google Scholar

    [17]

    Cullen J R, Callen E R 1973 Phys. Rev. B 7 397Google Scholar

    [18]

    Chakraverty B K 1974 Solid State Commun. 15 1271Google Scholar

    [19]

    Buckwald R A, Hirsch A A 1975 Solid State Commun. 17 621Google Scholar

    [20]

    Bartel J J, Westrum E F, Haas J L 1976 J. Chem. Thermodyn. 8 575Google Scholar

    [21]

    Matsui M, Todo S, Chikazumi S 1977 J. Phys. Soc. Jpn. 42 1517Google Scholar

    [22]

    Rigo M O, Kleinclauss J 1980 Philos. Mag. B 42 393Google Scholar

    [23]

    Senn M S, Wright J P, Attfield J P 2012 Nature 481 173Google Scholar

    [24]

    Miles P A, Westphal W B, von Hippel A 1957 Rev. Mod. Phys. 29 279Google Scholar

    [25]

    Wright J P, Attfield J P, Radaelli P G 2001 Phys. Rev. Lett. 87 266401Google Scholar

    [26]

    Bohra M, Agarwal N, Singh V 2019 J. Nanomater. 2019 8457383

    [27]

    Bickford Jr L R 1950 Phys. Rev. 78 449Google Scholar

    [28]

    Kato K, Iida S 1981 J. Phys. Soc. Jpn. 50 2844Google Scholar

    [29]

    Chikazumi S, Chiba K, Suzuki K and Chikazumi S 1970 Proceedings of the International Conference on Ferrites Kyoto, Japan, July 6−15, 1970 p595

    [30]

    Iida S, Yamamoto M, Umemura S 1974 AIP Conf. Proc. 18 913

    [31]

    Vieland L J 1975 Acta Crystallogr., Sect. A: Found. Crystallogr. 31 753

    [32]

    Shirane G, Chikazumi S, Akimitsu J, Chiba K, Matsui M, Fujii Y 1975 J. Phys. Soc. Jpn. 39 949Google Scholar

    [33]

    Iizumi M, Shirane G 1975 Solid State Commun. 17 433Google Scholar

    [34]

    Iizumi M, Koetzle T F, Shirane G, Chikazumi S, Matsui M, Todo S 1982 Acta Crystallogr., Sect. B: Struct. Sci. 38 2121Google Scholar

    [35]

    Wright J P, Attfield J P, Radaelli P G 2002 Phys. Rev. B 66 214422Google Scholar

    [36]

    Jeng H T, Guo G Y, Huang D J 2006 Phys. Rev. B 74 195115Google Scholar

    [37]

    Senn M S, Loa I, Wright J P, Attfield J P 2012 Phys. Rev. B 85 125119Google Scholar

    [38]

    Anderson P W 1956 Phys. Rev. 102 1008Google Scholar

    [39]

    Weng S C, Lee Y R, Chen C G, Chu C H, Soo Y L, Chang S L 2012 Phys. Rev. Lett. 108 146404Google Scholar

    [40]

    de Jong S, Kukreja R, Trabant C, Pontius N, Chang C F, Kachel T, Beye M, Sorgenfrei F, Back C H, Bräuer B, Schlotter W F, Turner J J, Krupin O, Doehler M, Zhu D, Hossain M A, Scherz A O, Fausti D, Novelli F, Esposito M, Lee W S, Chuang Y D, Lu D H, Moore R G, Yi M, Trigo M, Kirchmann P, Pathey L, Golden M S, Buchholz M, Metcalf P, Parmigiani F, Wurth W, Föhlisch A, Schüßler-Langeheine C, Dürr H A 2013 Nat. Mater. 12 882Google Scholar

    [41]

    Mi W B, Guo Z B, Wang Q X, Yang Y, Bai H L 2013 Scr. Mater. 68 972Google Scholar

    [42]

    Margulies D T, Parker F T, Spada F E, Goldman R S, Li J, Sinclair R, Berkowitz A E 1996 Phys. Rev. B 53 9175Google Scholar

    [43]

    Liu X, Mi W B, Zhang Q, Zhang X X 2018 Appl. Phys. Lett. 113 012401Google Scholar

    [44]

    Margulies D T, Parker F T, Rudee M L, Spada F E, Chapman J N, Aitchison P R, Berkowitz A E 1997 Physical Review Letters 79 5162

    [45]

    Fitzgerald A G, May T G 1976 Thin Solid Films 35 201Google Scholar

    [46]

    Celotto S, Eerenstein W, Hibma T 2003 Eur. Phys. J. B 36 271Google Scholar

    [47]

    Liu X H, Liu W, Zhang Z D 2017 Phys. Rev. B 96 094405Google Scholar

    [48]

    McKenna K P, Hofer F, Gilks D, Lazarov V K, Chen C, Wang Z C, Ikuhara Y 2014 Nat. Commun. 5 6740

    [49]

    Kasama T, Church N S, Feinberg J M Dunin-Borkowski R E, Harrison R J 2010 Earth Planet. Sci. Lett. 297 10Google Scholar

    [50]

    Kasama T, Harrison R J, Church N S, Nagao M, Feinberg J M, Dunin-Borkowski R E 2013 Phase Transitions 86 67Google Scholar

    [51]

    de la Figuera J, Novotny Z, Setvin M, Liu T J, Mao Z Q, Chen G, N’Diaye T A, Schmid M, Diebold U, Schmid K A, S.Parkinson G 2013 Phys. Rev. B 88 161410Google Scholar

    [52]

    Chen C L, Li H P, Seki T, Yin D Q, Sanchez-Santolino G, Inoue K, Shibata N, Ikuhara Y 2018 ACS Nano 12 2662Google Scholar

    [53]

    Attfield J P 2014 J. Jpn. Soc. Powder Powder Metall. 61 S43Google Scholar

    [54]

    Jeng H T, Guo G Y, Huang D J 2004 Phys. Rev. Lett. 93 156403Google Scholar

    [55]

    Liu X, Yin L, Mi W B 2017 Sci. Rep. 7 43403Google Scholar

    [56]

    Verwey E J W, Haayman P W 1941 Physica 8 979Google Scholar

    [57]

    Cullen J R, Callen E 1970 J. Appl. Phys. 41 879Google Scholar

    [58]

    Mott N F 1990 Metal-insulator transitions (2nd Ed.) (London: Taylor and Francis) p68

    [59]

    Chakraverty B K 1980 Philos. Mag. B 42 473Google Scholar

    [60]

    Seo H, Ogata M, Fukuyama H 2002 Phys. Rev. B 65 085107Google Scholar

    [61]

    van den Brink J, Khomskii D I 2008 J. Phys. Condens. Matter 20 434217Google Scholar

    [62]

    García J, Subías G, Proietti M G, Blasco J, Renevier H, Hodeau J L, Joly Y 2001 Phys. Rev. B 63 054110Google Scholar

    [63]

    Nazarenko E, Lorenzo J E, Joly Y, Hodeau J L, Mannix D, Marin C 2006 Phys. Rev. Lett. 97 056403Google Scholar

    [64]

    Leonov I, Yaresko A N, Antonov V N, Korotin M A, Anisimov V I 2004 Phys. Rev. Lett. 93 146404Google Scholar

    [65]

    Liu X H, Chang C F, Rata A D, Komarek A C, Tjeng L H 2016 npj Quantum Mater. 1 16027Google Scholar

    [66]

    Calhoun B A 1954 Phys. Rev. 94 1577Google Scholar

    [67]

    Palmer W 1963 Phys. Rev. 131 1057Google Scholar

    [68]

    Domenicali C A 1950 Phys. Rev. 78 458Google Scholar

    [69]

    Balberg I 1970 Phys. Rev. Lett. 25 1294Google Scholar

    [70]

    Kostopoulos D 1972 Phys. Status Solidi 9 523Google Scholar

    [71]

    Gong G Q, Gupta A, Xiao G, Qian W, Dravid V P 1997 Phys. Rev. B 56 5096Google Scholar

    [72]

    Rozenberg G K, Hearne G R, Pasternak M P, Metcalf P A, Honig J M 1996 Phys. Rev. B 53 6482Google Scholar

    [73]

    Ziese M, Blythe H J 2000 J. Phys. Condens. Matter 12 13Google Scholar

    [74]

    Feng J S Y, Pashley R D, Nicolet M A 1975 J. Phys. C: Solid State Phys. 8 1010Google Scholar

    [75]

    Margulies D T, Parker F T, Rudee M L, Spada F E, Chapman J N, Aitchison P R, Berkowitz A E 1997 Phys. Rev. Lett. 79 5162Google Scholar

    [76]

    Voogt F C, Palstra T T M, Niesen L, Rogojanu O C, James M A, Hibma T 1998 Phys. Rev. B 57 R8107Google Scholar

    [77]

    Eerenstein W, Palstra T T M, Saxena S S Hibma T 2002 Phys. Rev. Lett. 88 247204Google Scholar

    [78]

    Ramos A V, Moussy J B, Guittet M J, Bataille A M, Gautier-Soyer M 2006 J. Appl. Phys. 100 103902Google Scholar

    [79]

    Li P, Zhang L T, Mi W B, Jiang E Y, Bai H L 2009 J. Appl. Phys. 106 033908Google Scholar

    [80]

    Sofin R G S, Arora S K, Shvets I V 2011 Phys. Rev. B 83 134436Google Scholar

    [81]

    Ramos R, Arora S K, Shvets I V 2008 Phys. Rev. B 78 214402Google Scholar

    [82]

    Li P, Jiang E Y, Bai H L 2010 Appl. Phys. Lett. 96 092502Google Scholar

    [83]

    Hu C R, Zhu J, Chen G, Li J X, Wu Y Z 2012 Phys. Lett. A 376 3317Google Scholar

    [84]

    Ding Z, Li J X, Zhu J, Ma T P, Won C, Wu Y Z 2013 J. Appl. Phys. 113 17B

    [85]

    Liu X, Mi W B, Zhang Q, Zhang X X 2017 Phys. Rev. B 96 214434Google Scholar

    [86]

    Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166Google Scholar

    [87]

    Iwauchi K, Kita Y, Koizumi N 1980 J. Phys. Soc. Jpn. 49 1328Google Scholar

    [88]

    Kato K, Iida S 1982 J. Phys. Soc. Jpn 51 1335Google Scholar

    [89]

    Kato K, Iida S, Yanai K, Mizushima K 1983 J. Magn. Magn. Mater. 83 783

    [90]

    Miyamoto Y, Ishiyama K 1993 Solid State Commun. 87 581Google Scholar

    [91]

    Miyamoto Y, Ishihara S, Hirano T, Tkada M, Suzuki N 1994 Solid State Commun. 89 51Google Scholar

    [92]

    Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, Picozzi S, Gösele U 2009 Adv. Mater. 21 4452Google Scholar

    [93]

    Yamauchi K, Fukushima T, Picozzi S 2009 Phys. Rev. B 79 212404Google Scholar

    [94]

    Liu X, Mi W B 2018 Front. Phys. 13 134204Google Scholar

  • 图 1  Fe3O4的电阻率随温度的变化关系. 样品I中FeO∶Fe2O3 = 1∶1.025, 样品II中FeO:Fe2O3 = 1∶1.08[1]

    Fig. 1.  Temperature-dependent resistivity of Fe3O4 sample I with FeO∶Fe2O3 = 1∶1.025 and sample II with FeO∶Fe2O3 = 1∶1.08[1].

    图 2  尖晶石晶胞 (a)次晶格的堆叠方式; (b)晶体结构[24]

    Fig. 2.  Spinel unit cell: (a) Stacking pattern of sub-lattices; (b) crystal structure[24].

    图 3  空间群为$Fd\overline 3 m$, P2/m, P2/cCc的Fe3O4单胞[35]

    Fig. 3.  Relationship between the unit cells referred to the structure with space group $Fd\overline 3 m$, P2/m, P2/c and Cc[35].

    图 4  (a)三极化子和(b)三极化子分布的示意图[23]

    Fig. 4.  Schematic diagram of (a) trimeron and (b) distribution of trimeron[23].

    图 5  (a)−(d) Fe3O4(001)薄膜的TEM研究结果; (e)−(h) Fe3O4(111)薄膜的TEM研究结果. 室温和95 K的衍射斑点分别由室温相和低温相Fe3O4密勒指数标注. 图(g)中黄字为Al2O3密勒指数. 图(b)和图(f)棕球和红球分别代表Fe和O原子[41,43]

    Fig. 5.  TEM results of ((a)−(d)) Fe3O4(001) and ((e)−(h)) Fe3O4(111) films. White Miller index above (below) TV are marked with cubic (monoclinic) Fe3O4. Yellow Miller index in Fig. (g) indicates Al2O3. Brown and red spheres in Fig. (b) and Fig. (f) represent Fe and O[41,43].

    图 6  Fe3O4(110)面上APB的结构 (a)理想情况下Fe3O4的结构; (b)第一类APB(APB–I); (c)第二类APB(APB–II). APB的平移方向由绿色箭头表示, 红球为O原子, 蓝球为FeA离子, 灰球为FeB离子[48]

    Fig. 6.  {110} APB defects in Fe3O4: (a) The ideal cubic Fe3O4 structure; (b) APB-I; (c) APB-II. The APB crystal translations are indicated by green vectors. Red, blue and gray spheres represent the oxygen atoms, tetrahedral Fe and octahedral Fe atoms[48].

    图 7  立方相和单斜相Fe3O4晶格的相关性[49]

    Fig. 7.  Symmetrically distinct crystallographic relationships between cubic and monoclinic phases of magnetite[49].

    图 8  (a) Fe3O4薄膜的扫描隧道显微镜图像; (b)沿(a)中红线标记方向上的高度变化; (c)单斜结构Fe3O4; (d)由镜面对称单斜结构形成的Fe3O4[51]

    Fig. 8.  (a) STM image of Fe3O4(100) surface at 78 K; (b) profile along the line marked in red of (a); (c) the monoclinic unit cell of Fe3O4; (d) two mirrored monoclinic cells with opposite monoclinic c axis at a twin boundary[51].

    图 9  Fe3O4孪晶界处的自旋极化态密度图(density of states, DOS) (a) I型; (b) II型; (c) III型. 费米能级由红色虚线表示. 图中给出了弛豫后的模型. 态密度表明I型孪晶界处为铁磁耦合, II型和III型为反铁磁耦合[52]

    Fig. 9.  Spin-polarized DOS of Fe3O4 twin boundaries (TBs): (a) Type I TB; (b) Type II TB; (c) Type III TB. EF is represented by the red dashed lines. The relaxed atomistic models are also given for reference. The DOS suggest that the magnetic coupling across the type I TB is ferromagnetic and those across the type II and III TBs are antiferromagnetic[52].

    图 10  Fe3O4中Fe离子的3d电子轨道排布和磁耦合示意图[53]

    Fig. 10.  Sketch map of the electronic ground state of Fe 3d electrons and magnetic couplings in Fe3O4[53].

    图 11  Fe3O4的磁各向异性常数K1随温度的变化关系[27]

    Fig. 11.  Temperature dependent Anisotropy constant K1 of Fe3O4[27].

    图 12  Fe3O4的FeB位的电子局域模型 (a) Verwey提出的简单四面体Fe2+/Fe3+电荷有序模型; (b)包含两个Fe2+和两个Fe3+的安德森四面体模型; (c) FeB4四面体内的键二聚化, 电子局域化在两个距离相近的FeB–FeB内, 由粗线表示[53]

    Fig. 12.  Models for electron localization on FeB sites of Fe3O4: (a) Verwey’s tetragonal model of Fe2+/Fe3+ charge order; (b) an Anderson tetrahedron of two Fe2+ and two Fe3+ ions; (c) bond-dimerization in the FeB4 tetrahedron, where the electrons are localized in two shortened FeB-FeB distances, shown as bold lines[53].

    图 13  Fe3O4中FeB离子的态密度图, 费米能级位于EF = 0 eV处[54]

    Fig. 13.  DOS of Fe3O4 with the monoclinic structure projected onto the FeB d orbitals. Fermi level EF is set at 0 eV[54].

    图 14  δ12δ34置信因子的等值图. 最佳值为δ12 = 0.12 ± 0.025, δ34 = 0.10 ± 0.06. Fe1电子占据数为5.38和5.62, Fe4电子占据数为5.40和5.60[63]

    Fig. 14.  Isovalue of the confidence factor. The best agreement is obtained for δ12 = 0.12 ± 0.025 electrons and δ34 = 0.10 ± 0.06 electrons, where the charge occupancies of Fe1 and Fe4 are 5.38, 5.62 and 5.40, 5.60, respectively[63].

    图 15  150和660 nm厚的Fe3O4外延薄膜的ρT曲线及300 Oe磁场下660 nm厚的Fe3O4外延薄膜的磁化强度随温度的变化关系[71]

    Fig. 15.  Temperature dependent resistivity of 150 and 660-nm thick Fe3O4 films in the temperature range of 60–350 K. The temperature dependent magnetization of 660-nm thick film at a magnetic field of 300 Oe[71].

    图 16  (a) 70 K和(b) 115 K下, 660 nm厚的Fe3O4薄膜的磁电阻随磁场变化关系; (c) 0.5, 1, 2和4 T磁场下磁电阻随温度的变化关系[71]

    Fig. 16.  Magnetoresistance of 660 nm thick Fe3O4 films at (a) 70 K and (b) 115 K; (c) Temperature dependent magnetoresistance of 660-nm thick Fe3O4 film at the magnetic fields of 0.5, 1, 2, 4 T. The dotted lines are simulations using Mott’s formula[71].

    图 17  块体Fe3O4和200, 50和15 nm厚的Fe3O4薄膜的(a)磁化强度和(b)零场电阻率随温度的变化关系[73]

    Fig. 17.  Temperature dependent (a) magnetization and (b) zero-field resistivity of Fe3O4 single crystal and films with the thickness of 200, 50 and 15 nm[73].

    图 18  在磁场作用下, Fe3O4薄膜反相边界处的磁矩分布[77]

    Fig. 18.  Spin orientation of two ferromagnetic chains with antiferromagnetic coupling at an atomically sharp boundary at a magnetic field[77].

    图 19  在5 T磁场下, (a) 67 nm厚的Fe3O4薄膜和(b) Fe3O4块体的AMR[81]

    Fig. 19.  AMR of the (a) 67 nm thick Fe3O4 film and (b) Fe3O4 single crystal at a magnetic field of 5 T[81].

    图 20  外延Fe3O4(100)薄膜的AMR (a) 50 kOe下AMR随温度的变化; (b) 110 K和(c)80 K下AMR随磁场的变化[85]

    Fig. 20.  AMR of the epitaxial Fe3O4(100) film: (a) Temperature-dependent AMR at a 50 kOe magnetic field; AMR at (b) 110 K and (c) 80 K[85].

    图 21  (a)测试示意图; (b) 80 K和50 kOe下, Fe3O4(100)薄膜的AMR与三极化子分布的关系; (c) 110 K和10 kOe下, Fe3O4(111)薄膜的AMR与三极化子分布的关系. 三极化子示意图如右上角所示[85]

    Fig. 21.  (a) Schematic of the measurements; (b) relation between AMR and distribution of in-plane trimeron of Fe3O4(100) film at 80 K and 50 kOe; (c) relation between AMR and distribution of in-plane trimeron of Fe3O4(111) film at 110 K and 10 kOe. The trimeron is shown in the upper right corner[85].

    图 22  (a) Pd/Fe3O4/Nd:SrTiO3异质结构的电滞回线[92]; (b) P2/c (左图)和Cc空间群(右图)的FeB离子结构. 橙色和蓝色球表示Fe2+和Fe3+. 红色箭头表示电荷转移引起的电偶极矩[93]

    Fig. 22.  (a) Dielectric hysteresis loop of Pd/Fe3O4/Nd:SrTiO3 heterostructure[92]; (b) ionic structure of Fe octahedral sites with P2/c (left) and Cc (right) space groups. Orange and blue balls represent the Fe2+ and Fe3+ ions. Electric dipole moments caused by charge shifts are indicated by red arrows[93].

    图 23  (a)低温相Fe3O4铁电极化在x, z轴方向的分量; (b)体系总能随应力的变化[94]

    Fig. 23.  (a) Ferroelectric polarization along the x and z axes; (b) strain dependent total energy[94].

    表 1  外延Fe3O4(001)薄膜中APB处的磁交换相互作用[46]

    Table 1.  Magnetic exchange interaction across APBs in the epitaxial Fe3O4(001) films[46].

    交换相互作用类型和角度磁性和强度出现位置
    FeB-O-FeB超交换, 180°反铁磁, 强APB处
    FeA-O-FeA超交换, 约140°反铁磁, 强APB处
    FeB-O-FeA超交换, 约120°反铁磁, 强块体和APB处
    FeB-O-FeB超交换, 90°铁磁, 弱块体和APB处
    FeA-O-FeA超交换, 约70°反铁磁, 弱APB处
    FeB-FeB直接铁磁, 弱块体和APB处
    FeA-FeA直接反铁磁, 弱APB处
    FeB-FeA直接铁磁, 弱APB处
    下载: 导出CSV

    表 2  P2/c$Fd\overline 3 m$空间群下, ${{{a_c}}/{\sqrt 2 }} \times {{{a_c}}/{\sqrt 2 }} \times 2{a_c}$晶胞Fe3O4的电荷差(CS)、轨道有序度(OO)及总能量Et[36]

    Table 2.  Calculated charge separations (CS), orbital ordering (OO) and the total energy (Et) of Fe3O4 with ${{{a_c}}/{\sqrt 2 }} \times {{{a_c}}/{\sqrt 2 }} \times 2{a_c}$ unit cell in monoclinic P2/c and cubic phase[36].

    U/eVP2/c$Fd\overline 3 m$
    ↓gap/eVCS/eOO(P)Et/eV·(f.u.)–1↓gap/eVCS/eOO(P)Et/eV·(f.u.)–1
    0.0No0.00No(0.55)–0.15No0.00No(0.34)0.00
    4.0No0.11Yes(0.98)–0.15No0.10Yes(0.96)–0.22
    4.50.20.15Yes(0.98)–0.53No0.12Yes(0.96)–0.27
    5.00.420.17Yes(0.97)–0.750.110.16Yes(0.96)–0.35
    5.50.630.19Yes(0.96)–0.850.280.19Yes(0.91)–0.47
    下载: 导出CSV
    Baidu
  • [1]

    Verwey E J W 1939 Nature 144 327

    [2]

    Renger K 1913 Ph. D. Dissertation (Zürich: Swiss Federal Institute of Technology Zürich)

    [3]

    Parks G S, Kelly K K 1926 J. Phys. Chem. 30 47Google Scholar

    [4]

    Millar R W 1929 J. Am. Chem. Soc. 51 215Google Scholar

    [5]

    Okamura T 1932 Sci. Rep. Tohoku Imp. Univ. 21 231

    [6]

    Ellefson B S, Taylor N W 1934 J. Chem. Phys. 2 58Google Scholar

    [7]

    Weiss P, Forrer R 1929 Ann. Phys. 12 279

    [8]

    Bragg W H 1915 Philos. Mag. 30 305Google Scholar

    [9]

    Bragg W H and Brown G B 1926 Z. Kristallogr. 63 122

    [10]

    Claassen A 1926 Proc. Phys. Soc. 38 482

    [11]

    Néel L 1948 Ann. Phys. 3 137

    [12]

    Verwey E J W, Heilmann E L 1948 J. Chem. Phys. 16 1091Google Scholar

    [13]

    Verwey E J W, Haayman P W, Romeijn F C 1947 J. Chem. Phys. 15 181Google Scholar

    [14]

    Westrum E F, Grønvold F 1969 J. Chem. Thermodyn. 1 543Google Scholar

    [15]

    Cullen J R, Callen E R 1971 Solid State Commun. 9 1041Google Scholar

    [16]

    Evans B J, Westrum E F 1972 Phys. Rev. B 5 3791Google Scholar

    [17]

    Cullen J R, Callen E R 1973 Phys. Rev. B 7 397Google Scholar

    [18]

    Chakraverty B K 1974 Solid State Commun. 15 1271Google Scholar

    [19]

    Buckwald R A, Hirsch A A 1975 Solid State Commun. 17 621Google Scholar

    [20]

    Bartel J J, Westrum E F, Haas J L 1976 J. Chem. Thermodyn. 8 575Google Scholar

    [21]

    Matsui M, Todo S, Chikazumi S 1977 J. Phys. Soc. Jpn. 42 1517Google Scholar

    [22]

    Rigo M O, Kleinclauss J 1980 Philos. Mag. B 42 393Google Scholar

    [23]

    Senn M S, Wright J P, Attfield J P 2012 Nature 481 173Google Scholar

    [24]

    Miles P A, Westphal W B, von Hippel A 1957 Rev. Mod. Phys. 29 279Google Scholar

    [25]

    Wright J P, Attfield J P, Radaelli P G 2001 Phys. Rev. Lett. 87 266401Google Scholar

    [26]

    Bohra M, Agarwal N, Singh V 2019 J. Nanomater. 2019 8457383

    [27]

    Bickford Jr L R 1950 Phys. Rev. 78 449Google Scholar

    [28]

    Kato K, Iida S 1981 J. Phys. Soc. Jpn. 50 2844Google Scholar

    [29]

    Chikazumi S, Chiba K, Suzuki K and Chikazumi S 1970 Proceedings of the International Conference on Ferrites Kyoto, Japan, July 6−15, 1970 p595

    [30]

    Iida S, Yamamoto M, Umemura S 1974 AIP Conf. Proc. 18 913

    [31]

    Vieland L J 1975 Acta Crystallogr., Sect. A: Found. Crystallogr. 31 753

    [32]

    Shirane G, Chikazumi S, Akimitsu J, Chiba K, Matsui M, Fujii Y 1975 J. Phys. Soc. Jpn. 39 949Google Scholar

    [33]

    Iizumi M, Shirane G 1975 Solid State Commun. 17 433Google Scholar

    [34]

    Iizumi M, Koetzle T F, Shirane G, Chikazumi S, Matsui M, Todo S 1982 Acta Crystallogr., Sect. B: Struct. Sci. 38 2121Google Scholar

    [35]

    Wright J P, Attfield J P, Radaelli P G 2002 Phys. Rev. B 66 214422Google Scholar

    [36]

    Jeng H T, Guo G Y, Huang D J 2006 Phys. Rev. B 74 195115Google Scholar

    [37]

    Senn M S, Loa I, Wright J P, Attfield J P 2012 Phys. Rev. B 85 125119Google Scholar

    [38]

    Anderson P W 1956 Phys. Rev. 102 1008Google Scholar

    [39]

    Weng S C, Lee Y R, Chen C G, Chu C H, Soo Y L, Chang S L 2012 Phys. Rev. Lett. 108 146404Google Scholar

    [40]

    de Jong S, Kukreja R, Trabant C, Pontius N, Chang C F, Kachel T, Beye M, Sorgenfrei F, Back C H, Bräuer B, Schlotter W F, Turner J J, Krupin O, Doehler M, Zhu D, Hossain M A, Scherz A O, Fausti D, Novelli F, Esposito M, Lee W S, Chuang Y D, Lu D H, Moore R G, Yi M, Trigo M, Kirchmann P, Pathey L, Golden M S, Buchholz M, Metcalf P, Parmigiani F, Wurth W, Föhlisch A, Schüßler-Langeheine C, Dürr H A 2013 Nat. Mater. 12 882Google Scholar

    [41]

    Mi W B, Guo Z B, Wang Q X, Yang Y, Bai H L 2013 Scr. Mater. 68 972Google Scholar

    [42]

    Margulies D T, Parker F T, Spada F E, Goldman R S, Li J, Sinclair R, Berkowitz A E 1996 Phys. Rev. B 53 9175Google Scholar

    [43]

    Liu X, Mi W B, Zhang Q, Zhang X X 2018 Appl. Phys. Lett. 113 012401Google Scholar

    [44]

    Margulies D T, Parker F T, Rudee M L, Spada F E, Chapman J N, Aitchison P R, Berkowitz A E 1997 Physical Review Letters 79 5162

    [45]

    Fitzgerald A G, May T G 1976 Thin Solid Films 35 201Google Scholar

    [46]

    Celotto S, Eerenstein W, Hibma T 2003 Eur. Phys. J. B 36 271Google Scholar

    [47]

    Liu X H, Liu W, Zhang Z D 2017 Phys. Rev. B 96 094405Google Scholar

    [48]

    McKenna K P, Hofer F, Gilks D, Lazarov V K, Chen C, Wang Z C, Ikuhara Y 2014 Nat. Commun. 5 6740

    [49]

    Kasama T, Church N S, Feinberg J M Dunin-Borkowski R E, Harrison R J 2010 Earth Planet. Sci. Lett. 297 10Google Scholar

    [50]

    Kasama T, Harrison R J, Church N S, Nagao M, Feinberg J M, Dunin-Borkowski R E 2013 Phase Transitions 86 67Google Scholar

    [51]

    de la Figuera J, Novotny Z, Setvin M, Liu T J, Mao Z Q, Chen G, N’Diaye T A, Schmid M, Diebold U, Schmid K A, S.Parkinson G 2013 Phys. Rev. B 88 161410Google Scholar

    [52]

    Chen C L, Li H P, Seki T, Yin D Q, Sanchez-Santolino G, Inoue K, Shibata N, Ikuhara Y 2018 ACS Nano 12 2662Google Scholar

    [53]

    Attfield J P 2014 J. Jpn. Soc. Powder Powder Metall. 61 S43Google Scholar

    [54]

    Jeng H T, Guo G Y, Huang D J 2004 Phys. Rev. Lett. 93 156403Google Scholar

    [55]

    Liu X, Yin L, Mi W B 2017 Sci. Rep. 7 43403Google Scholar

    [56]

    Verwey E J W, Haayman P W 1941 Physica 8 979Google Scholar

    [57]

    Cullen J R, Callen E 1970 J. Appl. Phys. 41 879Google Scholar

    [58]

    Mott N F 1990 Metal-insulator transitions (2nd Ed.) (London: Taylor and Francis) p68

    [59]

    Chakraverty B K 1980 Philos. Mag. B 42 473Google Scholar

    [60]

    Seo H, Ogata M, Fukuyama H 2002 Phys. Rev. B 65 085107Google Scholar

    [61]

    van den Brink J, Khomskii D I 2008 J. Phys. Condens. Matter 20 434217Google Scholar

    [62]

    García J, Subías G, Proietti M G, Blasco J, Renevier H, Hodeau J L, Joly Y 2001 Phys. Rev. B 63 054110Google Scholar

    [63]

    Nazarenko E, Lorenzo J E, Joly Y, Hodeau J L, Mannix D, Marin C 2006 Phys. Rev. Lett. 97 056403Google Scholar

    [64]

    Leonov I, Yaresko A N, Antonov V N, Korotin M A, Anisimov V I 2004 Phys. Rev. Lett. 93 146404Google Scholar

    [65]

    Liu X H, Chang C F, Rata A D, Komarek A C, Tjeng L H 2016 npj Quantum Mater. 1 16027Google Scholar

    [66]

    Calhoun B A 1954 Phys. Rev. 94 1577Google Scholar

    [67]

    Palmer W 1963 Phys. Rev. 131 1057Google Scholar

    [68]

    Domenicali C A 1950 Phys. Rev. 78 458Google Scholar

    [69]

    Balberg I 1970 Phys. Rev. Lett. 25 1294Google Scholar

    [70]

    Kostopoulos D 1972 Phys. Status Solidi 9 523Google Scholar

    [71]

    Gong G Q, Gupta A, Xiao G, Qian W, Dravid V P 1997 Phys. Rev. B 56 5096Google Scholar

    [72]

    Rozenberg G K, Hearne G R, Pasternak M P, Metcalf P A, Honig J M 1996 Phys. Rev. B 53 6482Google Scholar

    [73]

    Ziese M, Blythe H J 2000 J. Phys. Condens. Matter 12 13Google Scholar

    [74]

    Feng J S Y, Pashley R D, Nicolet M A 1975 J. Phys. C: Solid State Phys. 8 1010Google Scholar

    [75]

    Margulies D T, Parker F T, Rudee M L, Spada F E, Chapman J N, Aitchison P R, Berkowitz A E 1997 Phys. Rev. Lett. 79 5162Google Scholar

    [76]

    Voogt F C, Palstra T T M, Niesen L, Rogojanu O C, James M A, Hibma T 1998 Phys. Rev. B 57 R8107Google Scholar

    [77]

    Eerenstein W, Palstra T T M, Saxena S S Hibma T 2002 Phys. Rev. Lett. 88 247204Google Scholar

    [78]

    Ramos A V, Moussy J B, Guittet M J, Bataille A M, Gautier-Soyer M 2006 J. Appl. Phys. 100 103902Google Scholar

    [79]

    Li P, Zhang L T, Mi W B, Jiang E Y, Bai H L 2009 J. Appl. Phys. 106 033908Google Scholar

    [80]

    Sofin R G S, Arora S K, Shvets I V 2011 Phys. Rev. B 83 134436Google Scholar

    [81]

    Ramos R, Arora S K, Shvets I V 2008 Phys. Rev. B 78 214402Google Scholar

    [82]

    Li P, Jiang E Y, Bai H L 2010 Appl. Phys. Lett. 96 092502Google Scholar

    [83]

    Hu C R, Zhu J, Chen G, Li J X, Wu Y Z 2012 Phys. Lett. A 376 3317Google Scholar

    [84]

    Ding Z, Li J X, Zhu J, Ma T P, Won C, Wu Y Z 2013 J. Appl. Phys. 113 17B

    [85]

    Liu X, Mi W B, Zhang Q, Zhang X X 2017 Phys. Rev. B 96 214434Google Scholar

    [86]

    Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166Google Scholar

    [87]

    Iwauchi K, Kita Y, Koizumi N 1980 J. Phys. Soc. Jpn. 49 1328Google Scholar

    [88]

    Kato K, Iida S 1982 J. Phys. Soc. Jpn 51 1335Google Scholar

    [89]

    Kato K, Iida S, Yanai K, Mizushima K 1983 J. Magn. Magn. Mater. 83 783

    [90]

    Miyamoto Y, Ishiyama K 1993 Solid State Commun. 87 581Google Scholar

    [91]

    Miyamoto Y, Ishihara S, Hirano T, Tkada M, Suzuki N 1994 Solid State Commun. 89 51Google Scholar

    [92]

    Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, Picozzi S, Gösele U 2009 Adv. Mater. 21 4452Google Scholar

    [93]

    Yamauchi K, Fukushima T, Picozzi S 2009 Phys. Rev. B 79 212404Google Scholar

    [94]

    Liu X, Mi W B 2018 Front. Phys. 13 134204Google Scholar

  • [1] 柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞. 正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜.  , 2024, 73(22): 227301. doi: 10.7498/aps.73.20240701
    [2] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控.  , 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [3] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质.  , 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [4] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能.  , 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [5] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变.  , 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [6] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转.  , 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [7] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析.  , 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [8] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响.  , 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [9] 姜兴东, 管兴胤, 黄娟娟, 范小龙, 薛德胜. N+注入修复外延Fe膜面内六重磁对称.  , 2019, 68(12): 126102. doi: 10.7498/aps.68.20190131
    [10] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究.  , 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [11] 王强. 电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序.  , 2015, 64(18): 187501. doi: 10.7498/aps.64.187501
    [12] 张辉, 曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应.  , 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [13] 刘宁, 严国清, 毛强, 王桂英, 郭焕银. La0.3Ca0.7Mn1-xVxO3体系的有序相和再入型自旋玻璃行为研究.  , 2010, 59(8): 5759-5765. doi: 10.7498/aps.59.5759
    [14] 王桂英, 郭焕银, 毛强, 杨刚, 彭振生. V替代Mn对La0.45Ca0.55MnO3电荷有序相及自旋玻璃态的影响.  , 2010, 59(12): 8883-8889. doi: 10.7498/aps.59.8883
    [15] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离.  , 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [16] 李晓娟, 王强. 晶粒尺寸对Bi0.2Ca0.8MnO3电荷有序的影响.  , 2009, 58(9): 6482-6486. doi: 10.7498/aps.58.6482
    [17] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性.  , 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [18] 郭焕银, 刘 宁, 蔡之让, 张裕恒. Mn位W掺杂对La0.3Ca0.7MnO3体系磁结构的影响.  , 2006, 55(2): 865-872. doi: 10.7498/aps.55.865
    [19] 俞 坚, 张金仓, 曹桂新, 王仕鹏, 敬 超, 曹世勋. 相分离Nd0.5Ca0.5MnO3体系的再入型自旋玻璃行为和电荷有序.  , 2006, 55(4): 1914-1920. doi: 10.7498/aps.55.1914
    [20] 王仕鹏, 张金仓, 曹桂新, 俞 坚, 敬 超, 曹世勋. 半掺杂Sm0.5Ca0.5MnO3体系的电荷有序和再入型自旋玻璃行为.  , 2006, 55(1): 367-371. doi: 10.7498/aps.55.367
计量
  • 文章访问数:  19592
  • PDF下载量:  603
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 修回日期:  2019-12-17
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map