搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲强磁场下的电极化测量系统

刘婉馨 陈瑞 刘永杰 王俊峰 韩小涛 杨明

引用本文:
Citation:

脉冲强磁场下的电极化测量系统

刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明

A pulsed high magnetic field facility for electric polarization measurements

Liu Wan-Xin, Chen Rui, Liu Yong-Jie, Wang Jun-Feng, Han Xiao-Tao, Yang Ming
PDF
HTML
导出引用
  • 多铁性材料是当前物质科学研究的热点, 具有重要的科学研究意义和应用前景. 低温和强磁场实验环境为研究多铁性材料提供了一种有效途径. 脉冲强磁场下的电极化测量系统能实现最高磁场强度60 T、最低温度0.5 K的铁电特性测量. 该系统采用热释电方法, 具有磁场强度高、控温范围广、转角测量等特点, 可用于强磁场下的磁电特性研究. 本文介绍了该系统的测量装置和实验原理, 并展示了其在多铁性材料研究中的一系列应用, 揭示了脉冲强磁场电极化测量系统在磁电特性探索中的重要作用.
    Multiferroic materials, which exhibit the coexistence of ferromagnetic, ferroelectric, or ferroelastic orders, are of particular interest for not only fundamental physics but also potential applications. An important physical property of multiferroic materials, especially those with magnetically driven ferroelectricity, is known as a strong magnetoelectric coupling between the magnetic order and the ferroelectric order. The external magnetic fields can directly interact with spins or magnetic moments of the materials and lead the spontaneous ferroelectricity to be suppressed, and in some cases result in field-induced ferroelectricity in a higher field. Depending on the exchange interactions, these ferroelectric phase transitions may take place in a critical magnetic field as high as several tens of tesla. The standard electric-polarization measurement based on a commercial PPMS system is limited by the strength of the static field consequently. As an extremely experimental condition, pulsed magnetic fields can be used to reveal new physical phenomena in multiferroic materials. Due to the short pulse duration and the effect of eddy current, this measurement technique under pulsed high magnetic fields is still a challenge to date although a few laboratories have developed it in recent years.Wuhan National High Magnetic Field Center (WHMFC) of China is a newly built pulsed-field laboratory. This experimental station is equipped with the many measuring instruments such as for measuring electric transport, magnetization, electron spin resonance, magneto-optics, and high pressure, which were established after the national assessment at the end of 2014. Recently, using a pyroelectric technique we successfully constructed an electric-polarization measurement system based on the large-scaled facility at the WHMFC. The nondestructive magnet driven by discharging a 1.25 MJ capacitor bank can generate a pulsed field up to 60 T. By tuning the charging energy and voltages, the pulse duration time can be modulated from 4.3 ms to 10.8 ms. A helium-3 cryogenic system equipped on this facility can achieve a lowest temperature down to 0.5 K. A high-precision rotation probe is designed and fabricated with angle varying from –5° to 185° for an angular-dependent study. The pyroelectric current is detected by a shunt resistor of 10 kΩ and the electric polarization is derived by integrating the pyroelectric current over the time. The resulting data have a good accuracy and quality which are helpful in detecting weak ferroelectric phase transitions induced by pulsed fields with a fast field sweep rate. In this paper, we introduce this measurement system in detail including the method, principle and its advantages in comparison with those in static fields. Recent study and progress of magnetoelectric multiferroic materials under high magnetic fields are also reported.
      通信作者: 陈瑞, ruicheng@hust.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(11574098)
      Corresponding author: Chen Rui, ruicheng@hust.edu.cn
    [1]

    Schmid H 1994 Ferroelectrics 162 317Google Scholar

    [2]

    Scott J F 2007 Nat. Mater. 6 256Google Scholar

    [3]

    Fiebig M J 2005 J. Phys. D: Appl. Phys. 38 123Google Scholar

    [4]

    Schmid H 2008 J. Phys. Condens. Matter 20 434201Google Scholar

    [5]

    Ouyang Z W, Sun Y C, Wang J F, Yue X Y, Chen R, Wang Z X, He Z Z, Xia Z C, Liu Y, Rao G H 2018 Phys. Rev. B 97 144406Google Scholar

    [6]

    Liu Y J, Wang J F, Sun X F, Zhou J S, Xia Z C, Ouyang Z W, Yang M, Liu C B, Chen R, Cheng J G, Kohama Y, Tokunaga M, Kindo K 2018 Phys. Rev. B 97 214419Google Scholar

    [7]

    Yin L, Ouyang Z W, Wang J F, Yue X Y, Chen R, He Z Z, Wang Z X, Xia Z C, Liu Y 2019 Phys. Rev. B 99 134434Google Scholar

    [8]

    Zhang X X, Xia Z C, Ke Y J, Zhang X Q, Cheng Z H, Ouyang Z W, Wang J F, Huang S, Yang F, Song Y J, Xiao G L, Deng H, Jiang D Q 2019 Phys. Rev. B 100 054418Google Scholar

    [9]

    刘沁莹, 王俊峰, 左华坤, 杨明, 韩小涛 2019 68 230701Google Scholar

    Liu Q Y, Wang J F, Zuo H K, Yang M, Han X T 2019 Acta Phys. Sin. 68 230701Google Scholar

    [10]

    Liu Y J, Wang J F, He Z Z, Lu C L, Xia Z C, Ouyang Z W, Liu, R. Chen C B, Matsuo A, Kohama Y, Kindo K, Tokunaga M 2018 Phys. Rev. B 97 174429Google Scholar

    [11]

    Chen R, Wang J F, Ouyang Z W, He Z Z, Wang S M, Lin L, Liu J M, Lu C L, Liu Y, Dong C, Liu C B, Xia Z C, Matsuo A, Kohama Y, Kindo K 2018 Phys. Rev. B 98 184404Google Scholar

    [12]

    He Z Z, Yamaura J I, Ueda Y, Cheng W D 2009 Phys. Rev. B 79 092404Google Scholar

    [13]

    Matsubara M, Manz S, Mochizuki M, Kubacka T, Iyama A, Aliouane N 2015 Science 348 1112Google Scholar

    [14]

    Abe N, Taniguchi K, Ohtani S, Takenobu T, Iwasa Y, Arima T 2007 Phys. Rev. Lett. 99 227206Google Scholar

    [15]

    Cabrera I, Kenzelmann M, Lawes G, Chen Y, Chen W C, Erwin R, Gentile T R, Leão J B, Lynn J W, Rogado N, Cava R J, Broholm C 2009 Phys. Rev. Lett. 103 087201Google Scholar

    [16]

    Rogado N, Lawes G, Huse D A, Ramirez A P, Cava R J 2002 Solid State Commun. 124 229Google Scholar

    [17]

    Fina I, Fàbrega L, Martí X, Sánchez F, Fontcuberta J 2011 Phys. Rev. Lett. 107 257601Google Scholar

    [18]

    Akaki M, Iwamoto H, Kihara T, Tokunaga M, Kuwahara H 2012 Phys. Rev. B 86 060413Google Scholar

    [19]

    Catalan G, Scott J F 2009 Adv. Mater. 21 2463Google Scholar

    [20]

    Tokunaga M, Akaki M, Ito T, Miyahara S, Miyake A, Kuwahara H, Furukawa N 2015 Nat. Commun. 6 5878Google Scholar

    [21]

    Chen R, Wang J F, Ouyang Z W, Tokunaga M, Luo A Y, Lin L, Liu J M, Xiao Y, Miyake A, Kohama Y, Lu C L, Yang M, Xia Z C, Kindo K, Li L 2019 Phys. Rev. B 100 140403Google Scholar

  • 图 1  脉冲强磁场电极化测量系统

    Fig. 1.  Schematic drawing for pulsed-high-magnetic-field polarization measurement system.

    图 2  磁体在不同电源模块下的磁场波形图(插图是通过改变放电电路产生的正负连续脉冲磁场)

    Fig. 2.  Pulsed magnetic fields generated by different capaciter banks (Inset: A full pulse including both positive and negative pulsed magnetic fields).

    图 3  (a)电极化测量电路图; (b)稳态和脉冲场下的电极化测量过程(折线部分表示该过程施加了电压)

    Fig. 3.  (a) Circuit diagram of electric polarization measurement; (b) measurement paths in steady and pulsed magnetic fields (The sawtooth lines denote the measuring process with applying voltage).

    图 4  (a)电极化测量样品杆示意图; (b)样品杆底端构造(左边为垂直杆, 右边为旋转杆)

    Fig. 4.  (a) The sample probe for electric polarization measure-ment; (b) the bottom of the probe (Left: a standard design; right: a rotation probe).

    图 5  多铁材料Co4Nb2O9的电极化测量结果 (a)原始实验数据; (b)数据处理结果

    Fig. 5.  Electric polarization measurement of multiferroic Co4Nb2O9: (a) Raw data; (b) the resulting P(H) curve.

    图 6  Ni2V2O7多晶在强磁场下的电极化特性曲线(ΔP = P(H) – P (H = 0))[11]

    Fig. 6.  Polarization curves of polycrystalline Ni2V2O7 in high magnetic fields (ΔP = P(H) – P (H = 0))[11]

    图 7  Ni3V2O8在不同偏置电压下的电极化反转及磁电记忆效应研究(首先, 施加+500 kV/m的电场, 测量1.6 K下的电极化强度; 接着, 施加–500 kV/m的电场, 进行两次连续的脉冲磁场电极化测量)

    Fig. 7.  Study on polarization reversal and magnetoelectric memory effect of Ni3V2O8 in different voltages (First, an electric field of +500 kV/m is applied to measure the electric polarization at 1.6 K. Then, two successive pulsed fields are performed by applying an electric field of –500 kV/m).

    图 8  Co2V2O7在强磁场下的转角电极化测量(磁场在bc面内旋转, 与c轴方向的夹角用θ代表)

    Fig. 8.  Angle-dependent polarization measurements of Co2V2O7 in high magnetic fields (the magnetic field is rotated in the bc plane, and the angle between the magnetic field and the c-axis direction is represented by θ).

    Baidu
  • [1]

    Schmid H 1994 Ferroelectrics 162 317Google Scholar

    [2]

    Scott J F 2007 Nat. Mater. 6 256Google Scholar

    [3]

    Fiebig M J 2005 J. Phys. D: Appl. Phys. 38 123Google Scholar

    [4]

    Schmid H 2008 J. Phys. Condens. Matter 20 434201Google Scholar

    [5]

    Ouyang Z W, Sun Y C, Wang J F, Yue X Y, Chen R, Wang Z X, He Z Z, Xia Z C, Liu Y, Rao G H 2018 Phys. Rev. B 97 144406Google Scholar

    [6]

    Liu Y J, Wang J F, Sun X F, Zhou J S, Xia Z C, Ouyang Z W, Yang M, Liu C B, Chen R, Cheng J G, Kohama Y, Tokunaga M, Kindo K 2018 Phys. Rev. B 97 214419Google Scholar

    [7]

    Yin L, Ouyang Z W, Wang J F, Yue X Y, Chen R, He Z Z, Wang Z X, Xia Z C, Liu Y 2019 Phys. Rev. B 99 134434Google Scholar

    [8]

    Zhang X X, Xia Z C, Ke Y J, Zhang X Q, Cheng Z H, Ouyang Z W, Wang J F, Huang S, Yang F, Song Y J, Xiao G L, Deng H, Jiang D Q 2019 Phys. Rev. B 100 054418Google Scholar

    [9]

    刘沁莹, 王俊峰, 左华坤, 杨明, 韩小涛 2019 68 230701Google Scholar

    Liu Q Y, Wang J F, Zuo H K, Yang M, Han X T 2019 Acta Phys. Sin. 68 230701Google Scholar

    [10]

    Liu Y J, Wang J F, He Z Z, Lu C L, Xia Z C, Ouyang Z W, Liu, R. Chen C B, Matsuo A, Kohama Y, Kindo K, Tokunaga M 2018 Phys. Rev. B 97 174429Google Scholar

    [11]

    Chen R, Wang J F, Ouyang Z W, He Z Z, Wang S M, Lin L, Liu J M, Lu C L, Liu Y, Dong C, Liu C B, Xia Z C, Matsuo A, Kohama Y, Kindo K 2018 Phys. Rev. B 98 184404Google Scholar

    [12]

    He Z Z, Yamaura J I, Ueda Y, Cheng W D 2009 Phys. Rev. B 79 092404Google Scholar

    [13]

    Matsubara M, Manz S, Mochizuki M, Kubacka T, Iyama A, Aliouane N 2015 Science 348 1112Google Scholar

    [14]

    Abe N, Taniguchi K, Ohtani S, Takenobu T, Iwasa Y, Arima T 2007 Phys. Rev. Lett. 99 227206Google Scholar

    [15]

    Cabrera I, Kenzelmann M, Lawes G, Chen Y, Chen W C, Erwin R, Gentile T R, Leão J B, Lynn J W, Rogado N, Cava R J, Broholm C 2009 Phys. Rev. Lett. 103 087201Google Scholar

    [16]

    Rogado N, Lawes G, Huse D A, Ramirez A P, Cava R J 2002 Solid State Commun. 124 229Google Scholar

    [17]

    Fina I, Fàbrega L, Martí X, Sánchez F, Fontcuberta J 2011 Phys. Rev. Lett. 107 257601Google Scholar

    [18]

    Akaki M, Iwamoto H, Kihara T, Tokunaga M, Kuwahara H 2012 Phys. Rev. B 86 060413Google Scholar

    [19]

    Catalan G, Scott J F 2009 Adv. Mater. 21 2463Google Scholar

    [20]

    Tokunaga M, Akaki M, Ito T, Miyahara S, Miyake A, Kuwahara H, Furukawa N 2015 Nat. Commun. 6 5878Google Scholar

    [21]

    Chen R, Wang J F, Ouyang Z W, Tokunaga M, Luo A Y, Lin L, Liu J M, Xiao Y, Miyake A, Kohama Y, Lu C L, Yang M, Xia Z C, Kindo K, Li L 2019 Phys. Rev. B 100 140403Google Scholar

  • [1] 杨双越, 温小琼, 杨元天, 李霄. 水下多针电极微秒脉冲流光放电特性.  , 2024, 73(7): 075203. doi: 10.7498/aps.73.20231881
    [2] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控.  , 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性.  , 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [4] 徐然, 冯玉军, 魏晓勇, 徐卓. PbLa(Zr, Sn, Ti)O3反铁电陶瓷在脉冲电场下的极化与相变行为.  , 2020, 69(12): 127710. doi: 10.7498/aps.69.20200209
    [5] 刘沁莹, 王俊峰, 左华坤, 杨明, 韩小涛. 基于转角样品杆的脉冲强磁场电输运测量系统.  , 2019, 68(23): 230701. doi: 10.7498/aps.68.20191115
    [6] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展.  , 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [7] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究.  , 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [8] 蔡田怡, 雎胜. 铁电体的光伏效应.  , 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [9] 宋骁, 高兴森, 刘俊明. 微纳尺度多铁异质结中电驱动磁反转.  , 2018, 67(15): 157512. doi: 10.7498/aps.67.20181219
    [10] 徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光. 基于PbMg1/3Nb2/3O3-PbTiO3压电单晶的磁电复合薄膜材料研究进展.  , 2018, 67(15): 157506. doi: 10.7498/aps.67.20180911
    [11] 陈延彬, 张帆, 张伦勇, 周健, 张善涛, 陈延峰. 探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性.  , 2015, 64(9): 097502. doi: 10.7498/aps.64.097502
    [12] 徐新河, 吴夏, 肖绍球, 甘月红, 王秉中. 磁电超材料折射率特性分析.  , 2013, 62(8): 084101. doi: 10.7498/aps.62.084101
    [13] 王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波. 脉冲强磁场高频电子自旋共振装置的研制.  , 2012, 61(10): 107601. doi: 10.7498/aps.61.107601
    [14] 关荣华. 表面序电极化、挠曲电极化与向列液晶盒饱和点的双稳态.  , 2011, 60(1): 016105. doi: 10.7498/aps.60.016105
    [15] 郭熹, 王霞, 郑鹉, 唐为华. Eu掺杂TbMnO3多晶材料的介电性质.  , 2010, 59(4): 2815-2819. doi: 10.7498/aps.59.2815
    [16] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究.  , 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [17] 吴绍全. 通过嵌入铁磁电极之间 Aharonov-Bohm 干涉仪自旋极化输运性质的研究.  , 2009, 58(6): 4175-4182. doi: 10.7498/aps.58.4175
    [18] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性.  , 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [19] 李智强, 陈敏, 沈文彬, 李景德. 铁电极化子动力学理论.  , 2001, 50(12): 2477-2481. doi: 10.7498/aps.50.2477
    [20] 张裕恒. 脉冲强磁场系统最佳设计的理论.  , 1980, 29(9): 1121-1134. doi: 10.7498/aps.29.1121
计量
  • 文章访问数:  8928
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-12-25
  • 刊出日期:  2020-03-05

/

返回文章
返回
Baidu
map