-
利用与铯原子吸收线对应的852 nm半导体激光作为基频光, 泵浦基于周期极化磷酸钛氧钾(PPKTP)晶体的环形腔, 进行高效外腔谐振倍频并产生426 nm激光. 在理论分析小角度环形腔内的热透镜效应基础上, 发现晶体中等效热透镜中心位置并非在晶体的几何中心. 在理论分析的基础上, 实验上通过精密平移台精细调节PPKTP晶体在腔内位置, 使得等效热透镜中心位置与谐振腔的腰斑位置重合, 进而减小晶体热透镜效应导致的模式失配对倍频效率的影响. 在泵浦功率为515 mW时产生了428 mW的426 nm激光输出, 对应的倍频转换效率为83.1%. 此高效倍频过程为制备与铯原子吸收线相匹配的非经典光场提供有效泵浦光, 为推动量子非经典光场的应用以及量子信息科学的发展奠定基础.
-
关键词:
- 倍频 /
- 铯原子 /
- 周期极化磷酸钛氧钾晶体 /
- 热透镜效应
Second harmonic generation (SHG) is used to get continuous wave laser with a lot of applications, it is a major way to provide pump power for generating nonclassical states, especially for squeezed states and entanglement states. High-efficiency SHG resonant on atoms lines also provides laser sources for atomic entanglement generation, light-atom interaction and high-speed quantum memory. For the frequency-doubling process at 426 nm, the major challenge of increasing the conversion efficiency is the thermal effect caused by the absorption in crystal. The degradation of mode-match efficiency induced by the severely thermal effect limits the conversion efficiency of the second harmonic generator. Furthermore, the blue light induced infrared absorption (BLIIRA) in the nonlinear crystal intensifies the thermal effect, it makes the conversion efficiency of the frequency-doubling cavity and the stability of the output blue laser worse, and it is more serious at high input power. Based on the theoretical analysis of thermal lens, we find that the thermal lens should not be placed at the center of the crystal, the location of the equivalently thermals lens has a deviation from the center of the crystal. Follow the theoretical analysis of thermal lens, we design a ring cavity with a 10 mm-long periodically poled potassium titanyle phosphate (PPKTP) crystal to reduce the thermal lens effect induced mode-mismatch. The location of nonlinear crystal is adjusted precisely to reduce the mode-mismatch caused by the thermal lens under our theoretical analysis. Finally, we realized a high conversion efficiency blue laser at 426 nm with the conversion efficiency up to 83.1% with an output power of 428 mW after the adjustment of the crystal location, corresponding to our theoretical analysis well. The measured beam quality factors (M2 value) of the generated blue laser are$ M^2(x) = 1.05 $ and$ M^2(y) = 1.02 $ , respectively. The measured power stability of Generated Blue laser in 15 mins is 1.25%. The output power of the SHG is strong enough to provide pump power for the generation of the continuous variable squeezed vacuum state at 852 nm and the long-term stability of the output blue laser is also measured to be fine. To the best of our knowledge, the conversion efficiency is the highest-reported one at this wavelength. We believe that such high-performance frequency doubling system is a fundamental building block for quantum information science based non-classical states.-
Keywords:
- frequency doubling /
- cesium atom /
- periodically poled potassium titanyle phosphate /
- thermal lens effect
[1] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar
[2] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[3] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义 2019 68 124205Google Scholar
Cheng M Y, Wang Z H, He H J, Wang X Z, Zhu J F, Wei Z Y 2019 Acta Phys. Sin. 68 124205Google Scholar
[4] Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar
[5] Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar
[6] Sun X, Wang Y, Tian L, Shi S, Zheng Y, Peng K 2019 Opt. Lett. 44 1789Google Scholar
[7] Eberle T, Handchen V, Schnabel R 2013 Opt. Expres 21 11546Google Scholar
[8] Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar
[9] Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar
[10] 霍美如, 秦际良, 孙颖榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134
Huo M R, Qin J L, Su Y R, Cheng J L, Yan Z H, Jia X J 2018 J. Quantum Opt. 24 134
[11] 李莹, 罗玉, 潘庆, 彭堃墀 2006 55 5030Google Scholar
Li Y, Luo Y, Pan Q, Peng K C 2006 Acta Phys. Sin. 55 5030Google Scholar
[12] Kimble H J 2008 Nature 453 1023Google Scholar
[13] Yan Z, Wu L, Jia X, Liu Y, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar
[14] Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio, M B, Serafini A, Wolf M M, Polzik E S 2010 Nat. Phys. 7 13
[15] Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar
[16] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar
[17] Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar
[18] Krauter H, Salart D, Muschik C A, Petersen J M, Shen H, Fernholz T, Polzik E S 2013 Nat. Phys. 9 400Google Scholar
[19] Zhdanov B V, Lu Y, Shaffer M K, Miller W, Wright D, Knize R J 2008 Opt. Express 16 17585Google Scholar
[20] Zhang Y, Liu J, Wu J, Ma R, Wang D, Zhang J 2016 Opt. Express 24 19769Google Scholar
[21] Zuo X J, Yan Z H, Jia X J 2019 Appl. Phys. Express 12 032010Google Scholar
[22] Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar
[23] Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 576Google Scholar
[24] Tian J, Yang C, Xue J, Zhang Y, Li G, Zhang T 2016 J. Opt. 18 055506Google Scholar
[25] Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar
[26] Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar
[27] Ashkin A, Boyd G, Dziedzic J 1966 IEEE J. Quantum Electron. QE 2 109
[28] Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar
[29] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar
[30] Uehara N, Gustafson E K, Fejer M M, Byer R L1997 Proceedings of the SPIE - the Interantional Society for Optical Engineerin(V2989) San Jose, CA, USA, Feb. 12–13, 1997 p57
[31] Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar
[32] Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar
[33] Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar
[34] Wang S, Pasiskevicius V, Laurell F, J 2004 J. Appl. Phys. 96 2023Google Scholar
-
-
[1] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar
[2] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[3] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义 2019 68 124205Google Scholar
Cheng M Y, Wang Z H, He H J, Wang X Z, Zhu J F, Wei Z Y 2019 Acta Phys. Sin. 68 124205Google Scholar
[4] Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar
[5] Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar
[6] Sun X, Wang Y, Tian L, Shi S, Zheng Y, Peng K 2019 Opt. Lett. 44 1789Google Scholar
[7] Eberle T, Handchen V, Schnabel R 2013 Opt. Expres 21 11546Google Scholar
[8] Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar
[9] Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar
[10] 霍美如, 秦际良, 孙颖榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134
Huo M R, Qin J L, Su Y R, Cheng J L, Yan Z H, Jia X J 2018 J. Quantum Opt. 24 134
[11] 李莹, 罗玉, 潘庆, 彭堃墀 2006 55 5030Google Scholar
Li Y, Luo Y, Pan Q, Peng K C 2006 Acta Phys. Sin. 55 5030Google Scholar
[12] Kimble H J 2008 Nature 453 1023Google Scholar
[13] Yan Z, Wu L, Jia X, Liu Y, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar
[14] Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio, M B, Serafini A, Wolf M M, Polzik E S 2010 Nat. Phys. 7 13
[15] Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar
[16] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar
[17] Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar
[18] Krauter H, Salart D, Muschik C A, Petersen J M, Shen H, Fernholz T, Polzik E S 2013 Nat. Phys. 9 400Google Scholar
[19] Zhdanov B V, Lu Y, Shaffer M K, Miller W, Wright D, Knize R J 2008 Opt. Express 16 17585Google Scholar
[20] Zhang Y, Liu J, Wu J, Ma R, Wang D, Zhang J 2016 Opt. Express 24 19769Google Scholar
[21] Zuo X J, Yan Z H, Jia X J 2019 Appl. Phys. Express 12 032010Google Scholar
[22] Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar
[23] Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 576Google Scholar
[24] Tian J, Yang C, Xue J, Zhang Y, Li G, Zhang T 2016 J. Opt. 18 055506Google Scholar
[25] Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar
[26] Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar
[27] Ashkin A, Boyd G, Dziedzic J 1966 IEEE J. Quantum Electron. QE 2 109
[28] Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar
[29] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar
[30] Uehara N, Gustafson E K, Fejer M M, Byer R L1997 Proceedings of the SPIE - the Interantional Society for Optical Engineerin(V2989) San Jose, CA, USA, Feb. 12–13, 1997 p57
[31] Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar
[32] Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar
[33] Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar
[34] Wang S, Pasiskevicius V, Laurell F, J 2004 J. Appl. Phys. 96 2023Google Scholar
计量
- 文章访问数: 9333
- PDF下载量: 202
- 被引次数: 0